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Abstract

A famous phenomenon in circle-maps and synchronisation problems leads to a two-parameter bifurcation diagram
commonly referred to as the Arnol 0d tongue scenario. One considers a perturbation of a rigid rotation of a circle, or a
system of coupled oscillators. In both cases we have two natural parameters, the coupling strength and a detuning param-
eter that controls the rotation number/frequency ratio. The typical parameter plane of such systems has Arnol 0d tongues
with their tips on the decoupling line, opening up into the region where coupling is enabled, and in between these Arnol 0d
tongues, quasi-periodic arcs. In this paper, we present unified algorithms for computing both Arnol 0d tongues and quasi-
periodic arcs for both maps and ODEs. The algorithms generalise and improve on the standard methods for computing
these objects. We illustrate our methods by numerically investigating the Arnol 0d tongue scenario for representative exam-
ples, including the well-known Arnol 0d circle map family, a periodically forced oscillator caricature, and a system of cou-
pled Van der Pol oscillators.
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1. Introduction

Many interesting problems in science and engineering lead to models involving either periodically forced
oscillators or coupled oscillators. Natural parameters to vary in the periodically forced oscillator setting
are the forcing amplitude and the forcing period/frequency. In the coupled oscillator setting, coupling strength
is a natural parameter, with a typical second parameter, often referred to as a ‘‘detuning’’ parameter, control-
ling the relative frequencies of the two coupled oscillators. The two settings can be unified by viewing period-
ically forced oscillators as coupled oscillators, with one-way coupling – the forcing amplitude corresponding to
the coupling strength.
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The most prominent phenomenon in these systems is the transition between phase locking (also called
entrainment or synchronisation) and quasi-periodicity. Phase locking produces a periodic solution which
generically persists as parameters are varied. In contrast, quasi-periodicity is a codimension-one phenomenon
which is thus generically destroyed by perturbation. The result is a well-known bifurcation diagram in the two-
parameter plane called the ‘‘Arnol 0d tongue’’ scenario [1–6,14,17,18,21,26,28,29,37]. It has a countable collec-
tion of Arnol 0d tongues, emanating from ‘‘rational’’ points on the zero forcing/coupling axis, and opening up
into regions where the coupling strength is turned on. Each tongue corresponds to phase locked solutions for
which the two frequencies of the oscillators satisfy x1/x2 = p/p for some integers p and q. In between the ton-
gues, emanating from all the ‘‘irrational’’ points on the zero forcing/amplitude axis, are curves of parameters
corresponding to quasi-periodic flow on a torus with an irrational frequency ratio x1/x2. This scenario is gen-
eric for weakly coupled oscillators [1,5]. A similar – but not identical – Arnold tongue scenario occurs in the
neighbourhood of a Neimark–Sacker curve [6,26,37]. We focus in this paper on continuation from zero forc-
ing amplitude, but arrive at a Neimark–Sacker curve by continuation in the second and third of our three
examples in Section 4. Look ahead to examples of these two-parameter bifurcation diagrams in Figs. 5, 9, 13.

There is a variety of ways in which we can model coupled oscillators. The simplest is as a flow in S� S.
Embedding each oscillator in Rni , i = 1,2, leads to the more general setting of a flow in Rn1 � Rn2 . In the decou-
pled case this flow has an invariant two-torus, which is the product of two limit cycles of the individual oscilla-
tors. Assuming these limit cycles are hyperbolic attractors, this two-torus will persist, at least for small coupling
strengths. This flow in Rn1 � Rn2 is often studied by reduction to a Poincaré return map of Rn1þn2�1 by sampling
the state of the system, for example, as it passes in a specified direction through a well-chosen hyperplane. In the
periodically forced oscillator case, this return map can be further reduced to a simple stroboscopic map of the
flow in Rn1 at the time period of the uncoupled limit cycle in Rn2 . This is possible because the flow in Rn2 is decou-
pled from the flow in Rn1 . The reduction can also be thought of as from a periodic non-autonomous flow in Rn1 to
an autonomous map in Rn1 . The invariant two-torus in the original flow becomes an invariant circle for either
the Poincaré map of Rn1þn2�1 or the stroboscopic map of Rn1 . This allows one further reduction, by restricting
attention to the invariant circle, from the maps of Rn to circle maps. This is the motivation for the Arnol 0d sine
circle map family which we study in Section 4.1.

Because the invariant circle is not guaranteed to persist globally in the parameter space, we study a more
general family in Section 4.2. This family is intended to exhibit generic properties of a Poincaré return map
generated by a periodically forced planar oscillator. We call this map the periodically forced oscillator carica-
ture map family. It has been studied previously in [27,28,31,32]. Note that both the Arnol 0d circle maps and
the caricature maps provide a significant computational shortcut by defining the maps directly, rather than
requiring integration of differential equations to define each iterate. Our third family, however, a system of
two linearly coupled Van der Pol oscillators, is defined directly from the following system of differential
equations:

€xþ eðx2 � 1Þ _xþ x ¼ aðy � xÞ;
€y þ eðy2 � 1Þ _y þ ð1þ bÞy ¼ aðx� yÞ;

We look briefly at this system now, to preview some of the main results of the paper. Specifically, we compare
the computation of certain Arnol 0d tongues via traditional methods with the computational algorithms intro-
duced in this paper.

The coupled Van der Pol system has been studied previously in [17,34,36]. We re-investigate it in more
depth in Section 4.3. This system is in the coupled oscillator setting introduced above, with coupling strength
a and the detuning parameter b. Hence, the (b,a) parameter plane exhibits the Arnol 0d tongue scenario and
our goal is to compute a preferably large set of these tongues. Since the boundaries of an Arnol 0d tongue are
loci of saddle-node or fold bifurcations [2,3,17], we used the continuation package AUTO [16] to compute
such fold curves for several Arnol 0d tongues. A standard method for computing an Arnol 0d tongue is to locate
a periodic point in the tongue, follow it to a saddle-node bifurcation, and then switch to continue the saddle-
node bifurcation curve in a and b as the boundary of the tongue. Fig. 1 shows the first six tongues correspond-
ing to the periods 1, 2, 3, 4 and 5. We found it not only very hard to obtain suitable start data, but we were also
unable to continue the curves all the way down to the zero coupling line a = 0. This is not due to a limitation
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