

Tetrahedron 62 (2006) 9115-9122

Tetrahedron

Palladium-catalyzed reactions of vinylidenecyclopropanes with acetic acid

Jian-Mei Lu and Min Shi*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

> Received 30 May 2006; revised 17 July 2006; accepted 18 July 2006 Available online 4 August 2006

Abstract—Pd(PPh₃)₄-catalyzed reactions of vinylidenecyclopropanes 1 with acetic acid proceeded smoothly at 80 $^{\circ}$ C in toluene to give the corresponding acetylated dienes 2 in moderate to good yields in the presence of DPEphos ligand. The plausible mechanism is proposed on the basis of the control and deuterium labeling experiments. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Vinylidenecyclopropanes $\mathbf{1}^1$ are one of the most remarkable organic compounds known. They have an allene moiety connected by a cyclopropane ring and yet they are thermally stable and reactive substances. Thermal and photochemical skeletal conversions of vinylidenecyclopropanes 1 have attracted much attention from mechanistic, theoretical, spectroscopic and synthetic viewpoints.^{2,3} Vinylidenecyclopropanes 1 also undergo a variety of unique addition reactions with electrophiles to give novel products sometimes along with the formation of cyclopropane ring-opened products. Previously, we reported the palladium-catalyzed isomerization of a variety of methylenecyclopropanes (MCPs), another kind of molecules having surprising stability along with a high level of strain, in acetic acid to give the corresponding 1-substituted or 1,1-disubstituted dienes in good yields.⁵ However, to the best of our knowledge, there has been no report on the palladium-catalyzed reactions of vinylidenecyclopropanes 1 until now. In this context, we wish to disclose the first example of palladium-catalyzed reactions of vinylidenecyclopropanes with acetic acid to give the corresponding acetylated dienes 2 in moderate to good yields.

2. Results and discussion

As an initial examination, the reaction of vinylidenecyclopropane **1a** with acetic acid (2.0 equiv) was carried out with a variety of catalysts in toluene at 80 °C. The results

Keywords: Palladium catalyst; Vinylidenecyclopropanes; Acetic acid; Acetylated dienes; Deuterium labeling experiment.

are summarized in Table 1. As shown in Table 1, Pd(PPh₃)₄ can catalyze the reaction of vinylidenecyclopropane 1a with acetic acid in toluene to produce 2a in moderate yields as mixtures of E- and Z-isomers (Table 1). The structure of product 2a was determined by ¹H and ¹³C NMR spectroscopic data, HRMS and NOESY analytic data (Supplementary data). The NOESY of 2a is shown in Figure 1, which clearly indicates that the major isomer has *E*-configuration. Other palladium catalysts, such as PdCl₂(PPh₃)₂, Pd(OAc)₂, PdCl₂(dppf) and Pd(dba)₂, did not catalyze the reaction under identical conditions (Table 1, entries 5, 8–10). A variety of phosphine ligands, such as PPh₃, AsPh₃, tri-2-furylphosphine (TFP), bis[(2-diphenylphosphino)phenyl]ether (DPEphos), 1,4-bis(diphenylphosphino)butane (dppb) and 1,3-bis(diphenylphosphino)propane (dppp), were also examined for this reaction to improve the yield of 2a. We found that when Pd(PPh₃)₄ (10 mol %) and DPEphos (40 mol %) were utilized in this reaction, 2a can be obtained in 58% yield as mixtures of E- and Z-isomers (E:Z=6:1) (Table 1, entry 16). Using Pd(OAc)₂ or Pd(dba)₂ as a catalyst, 2a was still obtained in lower yield even in the presence of AsPh₃ or DPEphos ligand (Table 1, entries 6, 11 and 12).

Using Pd(PPh₃)₄ (10 mol %) and DPEphos (40 mol %) as the catalyst, solvent effects were also examined upon heating or under reflux. The results are summarized in Table 1 as entries 16–20. As can be seen from these experiments, toluene is the best solvent for this reaction at 80 °C (Table 1, entries 16–20). We found that the employed amount of DPEphos slightly affected the yield of product **2a** in toluene at 80 °C (Table 1, entries 21–23). When Pd(PPh₃)₄ (10 mol %) and DPEphos (20 mol %) were used, **2a** was obtained in 64% yield, which is the highest yield in this reaction (Table 1, entry 22).

^{*} Corresponding author. Fax: +86 21 64166128; e-mail: mshi@pub.sioc. ac.cn

Table 1. Optimization of the reaction condition of 1a with acetic acid

$$C_6H_5$$
 + HOAc $Catalyst$ C_6H_5 + HOAc $Catalyst$ C_6H_5 C

Entry ^a	Catalyst/ligand/mol %	Solvent	Temp/°C	Time/h	2a Yield ^b /% (E:Z) ^c
1	_	Toluene	80	48	N.R
2	$Pd(PPh_3)_4$ (10)	Toluene	80	5	44 (6:1)
3	Pd(PPh ₃) ₄ /PPh ₃ (10/40)	Toluene	80	6	37 (6:1)
4	Pd(PPh ₃) ₄ /AsPh ₃ (10/40)	Toluene	80	6	50 (6:1)
5	$Pd(OAc)_2$	Toluene	80	12	Complex
6	Pd(OAc) ₂ /AsPh ₃ (10/40)	Toluene	80	18	14 (9:1)
7	Pd(PPh ₃) ₄ /TFP (10/40)	Toluene	80	6	38 (6:1)
8	PdCl ₂ (PPh ₃) ₂ /PPh ₃ (10/40)	Toluene	80	20	N.R
9	$PdCl_2(dppf)/dppf$ (10/20)	Toluene	80	24	N.R
10	$Pd(dba)_2$ (10)	Toluene	80	9	Complex
11	Pd(dba) ₂ /DPEphos (10/20)	Toluene	80	18	42 (8:1)
12	Pd(OAc) ₂ /DPEphos (10/20)	Toluene	80	18	36 (7:1)
13	Pd(PPh ₃) ₄ /dppp (10/40)	Toluene	80	33	34 (11:1)
14	Pd(PPh ₃) ₄ /dppb (10/40)	Toluene	80	33	32 (5:1)
15	$Pd(PPh_3)_4/(o-CH_3C_6H_4)_3P$ (10/40)	Toluene	80	17	36 (6:1)
16	Pd(PPh ₃) ₄ /DPEphos (10/40)	Toluene	80	20	58 (6:1)
17	Pd(PPh ₃) ₄ /DPEphos (10/40)	Toluene	110	11	26 (9:1)
18	Pd(PPh ₃) ₄ /DPEphos (10/40)	Dioxane	100	9	10 (11:1)
19	Pd(PPh ₃) ₄ /DPEphos (10/40)	CH ₃ CN	80	9	21 (9:1)
20	Pd(PPh ₃) ₄ /DPEphos (10/40)	THF	66	33	14 (12:1)
21	Pd(PPh ₃) ₄ /DPEphos (20/60)	Toluene	80	36	36 (>40:1)
22	Pd(PPh ₃) ₄ /DPEphos (10/20)	Toluene	80	18	64 (7:1)
23	Pd(PPh ₃) ₄ /DPEphos (10/10)	Toluene	80	12	60 (8:1)

^a All reactions were carried out using **1a** (0.3 mmol), AcOH (0.6 mmol) and catalysts in a variety of solvents (2.0 mL).

Under these optimized conditions, we next examined a variety of vinylidenecyclopropanes 1 with acetic acid for the reaction generality. The results are summarized in Table 2. With respect to the electron-rich and electron-poor arylvinylidenecyclopropanes 1 (R^1 , R^2 =aryl), they reacted with acetic acid smoothly to provide the corresponding acetylated dienes 2 in moderate to good yields (Table 2, entries 1–7).

For arylvinylidenecyclopropane 1c ($R^1 = C_6H_5$ and $R^2 = p\text{-ClC}_6H_4$), the corresponding E- and Z-isomers can be separated by silica gel chromatograph. In other cases, the corresponding E- and Z-isomers are inseparable. For alkylvinylidenecyclopropanes 1i and 1j ($R^1 = \text{alkyl}$, $R^2 = \text{aryl}$), the corresponding acetylated dienes 2i and 2j were also formed in 36 and 61% yields, respectively (Table 2, entries 8 and 9).

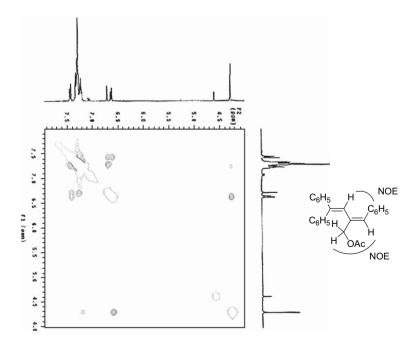


Figure 1.

^b Isolated yields.

^c Determined from ¹H NMR spectroscopic data and NOESY.

Download English Version:

https://daneshyari.com/en/article/5229854

Download Persian Version:

https://daneshyari.com/article/5229854

<u>Daneshyari.com</u>