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Abstract

This article is concerned with the numerical solution to the time-dependent Schrédinger equation on an infinite domain.
Two exact artificial boundary conditions are introduced to reduce the original problem into an initial boundary value
problem with a finite computational domain. The artificial boundary conditions involve the 1/2 order fractional derivative
in z. Then, a fully discrete explicit three-level difference scheme is derived. The truncation errors are analyzed in detail. The
stability and convergence with the convergence order of o+ th™ 2) are proved under the condition t/A* < 1/2 by the
energy method. A numerical example is given to demonstrate the accuracy and efficiency of the proposed method. Two
open problems are brought forward at the end of the article.
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1. Introduction

The time-dependent Schrédinger equation is the basic of quantum mechanics [8,16]. This model equation
also arises in many other practical domains of physical and technological interest, e.g. optics, seismology and
plasma physics. There are a lot of studies on the numerical solution of initial and initial-boundary problems
for solving the linear or nonlinear Schrodinger equation, see e.g. [9-14,22,23,28,31,32,40,43].

When we wish to solve numerically a differential equation defined on an infinite domain, it is necessary to
consider a finite sub-domain and to use artificial boundary conditions in such a way that the solutions in the
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finite sub-domain approximate the original solution. If the approximation is exact, the transfer is called
exact and the corresponding artificial boundary condition is called exact or transparent. For instance, dif-
ferent transparent boundary conditions (TBCs) for the wave equation are derived in [15,18,19,35,36,41,42].

In this article, we study the problem of the numerical approximation of a dispersive wave Y(x, ), solution to
the Schrodinger equation in an unbounded domain. More concretely, we consider the following linear
equation:
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where the electrostatic potential function V(x,?) is assumed to be given with Im(¥(x,?)) < 0, and for the sake
of conciseness, we assume that ¢ is a compactly supported datum. The solution to (1.1)—(1.3) is defined on the
whole domain Q = {(x,?)|x € R, > 0}. However, from a practical point of view, the infinite domain of prop-
agation has to next use a well-adapted discretization scheme for Eqs. (1.1)—(1.3). To this end, let us split the
initial domain @ into three regions. We designate by Q; = {(x,7)|x; < x < x, > 0} the interior domain where
one wishes to compute an approximate solution, and the two other complementary regions can be defined by
Q ={(x,0)|x <x,t>0} and Q, = {(x,1)|]x > x.,t>0}. To simplify the problem, we suppose that supp(¢)
c [x1,x.] and

V(x,t)=V_=const, forx<x, V(x,¢)=V,=const, forx > x,

with Im(V_) =Im(V3) =0

The transparent boundary conditions (TBCs) for Schrédinger equation were independently derived by sev-
eral authors from various application fields [2,7,21,29]; Inhomogeneous extensions are analyzed in [1,4]. They
are non-local in ¢ and read
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for the left boundary at x = x;, and
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for the right boundary at x = x,. Using the notations of the Riemann-Liouville fractional derivative, the
boundary conditions (1.4) and (1.5) can be written as
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There are also an equivalent form to (1.4) and (1.5) as follows
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for the left boundary at x = x;, and
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