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Abstract

This article is concerned with the numerical solution to the time-dependent Schrödinger equation on an infinite domain.
Two exact artificial boundary conditions are introduced to reduce the original problem into an initial boundary value
problem with a finite computational domain. The artificial boundary conditions involve the 1/2 order fractional derivative
in t. Then, a fully discrete explicit three-level difference scheme is derived. The truncation errors are analyzed in detail. The
stability and convergence with the convergence order of O(h3/2 + sh�1/2) are proved under the condition s/h2 < 1/2 by the
energy method. A numerical example is given to demonstrate the accuracy and efficiency of the proposed method. Two
open problems are brought forward at the end of the article.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The time-dependent Schrödinger equation is the basic of quantum mechanics [8,16]. This model equation
also arises in many other practical domains of physical and technological interest, e.g. optics, seismology and
plasma physics. There are a lot of studies on the numerical solution of initial and initial-boundary problems
for solving the linear or nonlinear Schrödinger equation, see e.g. [9–14,22,23,28,31,32,40,43].

When we wish to solve numerically a differential equation defined on an infinite domain, it is necessary to
consider a finite sub-domain and to use artificial boundary conditions in such a way that the solutions in the
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finite sub-domain approximate the original solution. If the approximation is exact, the transfer is called
exact and the corresponding artificial boundary condition is called exact or transparent. For instance, dif-
ferent transparent boundary conditions (TBCs) for the wave equation are derived in [15,18,19,35,36,41,42].

In this article, we study the problem of the numerical approximation of a dispersive wave w(x, t), solution to
the Schrödinger equation in an unbounded domain. More concretely, we consider the following linear
equation:
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where the electrostatic potential function V(x, t) is assumed to be given with Im(V(x, t)) 6 0, and for the sake
of conciseness, we assume that / is a compactly supported datum. The solution to (1.1)–(1.3) is defined on the
whole domain X = {(x, t)jx 2 R, t > 0}. However, from a practical point of view, the infinite domain of prop-
agation has to next use a well-adapted discretization scheme for Eqs. (1.1)–(1.3). To this end, let us split the
initial domain X into three regions. We designate by Xi = {(x, t)jxl 6 x 6 xr, t > 0} the interior domain where
one wishes to compute an approximate solution, and the two other complementary regions can be defined by
Xl = {(x, t)jx < xl, t > 0} and Xr = {(x, t)jx > xr, t > 0}. To simplify the problem, we suppose that supp(/)
� [xl,xr] and

V ðx; tÞ ¼ V � � const; for x 6 xl; V ðx; tÞ ¼ V þ � const; for x P xr;

with Im(V�) = Im(V+) = 0.
The transparent boundary conditions (TBCs) for Schrödinger equation were independently derived by sev-

eral authors from various application fields [2,7,21,29]; Inhomogeneous extensions are analyzed in [1,4]. They
are non-local in t and read
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for the left boundary at x = xl, and
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for the right boundary at x = xr. Using the notations of the Riemann–Liouville fractional derivative, the
boundary conditions (1.4) and (1.5) can be written as
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There are also an equivalent form to (1.4) and (1.5) as follows
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