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Abstract—A new self-assembled catalyst based on titanium complex has been developed for the effective enantioselective cyano-ethoxycar-
bonylation of aldehydes. The self-assembled catalyst was readily prepared from (R)-3,30-bis((methyl((S)-1-phenylethyl)amino)methyl)-1,10-
binaphthyl-2,20-diol (1h), N-((1S,2R)-2-hydroxy-1,2-diphenylethyl)acetamide (2b), and tetraisopropyl titanate (Ti(OiPr)4). A variety of
aromatic aldehydes, aliphatic aldehydes, and a,b-unsaturated aldehydes were found to be suitable substrates in the presence of the self-assembled
titanium catalyst (5 mol % 1h, 5 mol % 2b, and 5 mol % Ti(OiPr)4). The desired cyanohydrin ethyl carbonates were afforded with high iso-
lated yields (up to 95%) and moderate to good enantioselectivities (up to 92% ee) under mild conditions (at�15 �C). A possible catalytic cycle
based on the experimental observation was proposed.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The asymmetric cyanation of carbonyl compounds is a useful
synthetic method to prepare optically active cyanohydrins,
which are versatile building blocks for the synthesis of natu-
ral products and biologically active compounds.1 However,
in contrast to the cyanation of aldehydes and ketones employ-
ing trimethylsilyl cyanide (TMSCN) or hydrogen cyanide
(HCN) as the cyanide source in which considerable progress
has been made,2,3 the one-pot catalytic asymmetric cyana-
tion-O-protection reaction is still less developed. Recently,
several successful catalyst systems employing cyanoformate
(ROCOCN), acetyl cyanide or diethyl cyanophosphonate
have been studied.4–7 Among these precedents, Deng
reported a dimeric cinchona alkaloid derivative for the one-
pot enantioselective cyanation of aliphatic ketones.4 Shiba-
saki and Sansano et al. reported heterobimetallic complex
{YLi3[tris(binaphthoxide)]} and BINOLAM–Al or –Ti(IV)
complex for the addition of cyanoformate (ROCOCN) to
aldehydes.5 Belokon’, North, and Moberg developed a bime-
tallic titanium complex, and obtained the desired O-alkoxy-
carbonyl cyanohydrins with excellent results.6 Very recently,
our group investigated multicomponent titanium complex,
N,N-dioxide titanium complex, mononuclear salen titanium,
and heterobimetallic aluminum lithium bis(binaphthoxide)

in cyano-ethoxycarbonylation of aldehydes, with good yields
and enantioselectivities.7

In a different reaction, Mikami and Chan et al. reported self-
assembly of two different chiral ligand components into
a highly enantioselective titanium catalyst for carbonyl-ene
reaction and addition of alkynylzinc to aldehydes.8 Inspired
by this method, we continued to search for a new highly
efficient catalyst system using BINOL derivatives in combi-
nation with amino alcohol to achieve structural diversity.
Thus, a set of BINOL derivatives 1a–i and some chiral amino
alcohol ligands 2a–i were investigated (synthesis for ligands:
see Section 4 for details). Herein, we wish to report these
ligands that engender a more effective catalyst by self-assem-
bly for the cyano-ethoxycarbonylation of aldehydes.

2. Results and discussion

2.1. Catalyst precursor screening

In the preliminary studies, 10 mol % complexes of 1-
Ti(OiPr)4 were evaluated for the addition of ethyl cyanofor-
mate to benzaldehyde in dry CH2Cl2 at �15 �C (Table 1,
entries 1–10). It was found that the complex of 1h-Ti(OiPr)4

gave the best result (55% ee and 96% yield after 24 h, Table
1, entry 8). The reaction with complex of 1g-Ti(OiPr)4 was
slower, although it showed comparable enantioselectivity
with 1h-Ti(OiPr)4 (Table 1, entry 7). In contrast, the titanium
complexes of binol (1a), phosphorus-containing 1b or
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silicon-containing 1c, nitrogen-containing BINOL deriva-
tives 1d and 1e, did not catalyze the reaction under same re-
action conditions (Table 1, entries 1–5). Gratifyingly, when
the loading of 1h-Ti(OiPr)4 complex was decreased from 10
to 5 mol %, higher enantioselectivity was achieved, although
longer reaction time was required (87% ee after 48 h, Table
1, entry 10) (Fig. 1).

2.2. Chiral activator screening

To gain higher reactivity, some chiral activators8a,b 2a–i
were investigated fixing 5 mol % 1h-Ti(OiPr)4 complex as
the catalyst precursor (Table 2, entries 2 and 3, and 5–11).
To our delight, when 5 mol % chiral acetamide 2b was added
together with 5 mol % 1h-Ti(OiPr)4 complex, higher enan-
tioselectivity was obtained and the reactivity was increased
dramatically (Table 2, entry 3 vs 1), which might be attrib-
uted to the hydrogen bonding between the N–H moiety of
acetamide with the oxygen atom of ethyl cyanoformate.
Other combinations of chiral ligand with 1h-Ti(OiPr)4

complex gave lower ee’s, although higher reactivity was
observed (Table 2, entries 2, 5–11). The combination of tita-
nium binol complex with acetamide 2b was also tested, but
no product was detected (Table 2, entry 4). Therefore, 2b
was selected as the best chiral activator in the self-assembled
catalytic system (Fig. 2).

2.3. Catalyst system optimization

In the further studies, we found that the optimum ratio of chi-
ral ligands (1h and 2b) to Ti(OiPr)4 was 5/5/5 (Table 3, entry
1 vs entries 2–8). Other ratios gave moderate enantioselec-
tivity and reactivity (Table 3, entries 3 and 4, and 6–8).
Changing the ratio of chiral ligands 1h, 2b, and Ti(OiPr)4

to 2.5/5/2.5 greatly decreased the reactivity (Table 3, entry
5). We also found that the desired product could not be ob-
tained when titanium chiral acetamide 2b was used as the
catalyst (Table 3, entry 2).

Reaction solvent and other metal reagents were also exam-
ined (Table 4, entries 1–10). Among the investigated sol-
vents, ether solvents (THF or Et2O) were found to afford
the product in very low yields (Table 4, entries 2 and 3).
Toluene gave moderate enantioselectivity and reactivity

Table 1. Catalyst precursor screening

Ph H

O

NC OEt

O
+

CH2Cl2, -15 °C

Ti(IV) catalyst

3a 4 5a

CNPh

O OEt

O

Entrya Ti(OiPr)4

(mol %)
1a–i (mol %) Time (h) Yieldb

(%)
eec (%)

1 10 1a (10) 48 0 —
2 10 1b (10) 48 0 —
3 10 1c (10) 48 0 —
4 10 1d (10) 48 0 —
5 10 1e (10) 48 0 —
6 10 1f (10) 48 85 14(S)
7 10 1g (10) 48 95 53(S)
8 10 1h (10) 24 96 55(S)
9 10 1i (10) 40 87 27(S)
10 5 1h (5) 48 87 87(S)

a Concentration of benzaldehyde: 0.5 M; EtOCOCN: 1.5 equiv.
b Isolated yield.
c Determined by HPLC on Chiral OD-H column analysis, the absolute

configuration of the major product was S compared with the reported value
of optical rotation (Ref. 5a).
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Figure 1. Structures of the ligands evaluated in this study.

Table 2. Chiral activator screening

Ph H

O

NC OEt

O
+

CH2Cl2, -15 °C
Ti(IV) catalyst

3a 4 5a

CNPh

O OEt

O

Entrya 1h or 1a
(5 mol %)

2a–i
(5 mol %)

Time (h) Yieldb

(%)
eec

(%)

1 1h None 48 87 87(S)
2 1h 2a 20 99 17(S)
3 1h 2b 24 88 91(S)
4 1a 2b 48 0 —
5 1h 2c 24 97 60(S)
6 1h 2d 24 99 65(S)
7 1h 2e 30 99 63(S)
8 1h 2f 15 99 7(S)
9 1h 2g 20 90 15(S)
10 1h 2h 15 99 26(S)
11 1h 2i 24 90 3(S)

a Concentration of benzaldehyde: 0.5 M; Ti(OiPr)4: 5 mol %, EtOCOCN:
1.5 equiv.

b Isolated yield.
c Determined by HPLC on Chiral OD-H column analysis, the absolute

configuration of the major product was S compared with the reported value
of optical rotation (Ref. 5a).
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Figure 2. Structures of the chiral activators evaluated in this study.
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