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Abstract

With the increasing role of computational modeling in engineering design, performance estimation, and safety assess-
ment, improved methods are needed for comparing computational results and experimental measurements. Traditional
methods of graphically comparing computational and experimental results, though valuable, are essentially qualitative.
Computable measures are needed that can quantitatively compare computational and experimental results over a range
of input, or control, variables to sharpen assessment of computational accuracy. This type of measure has been recently
referred to as a validation metric. We discuss various features that we believe should be incorporated in a validation metric,
as well as features that we believe should be excluded. We develop a new validation metric that is based on the statistical
concept of confidence intervals. Using this fundamental concept, we construct two specific metrics: one that requires inter-
polation of experimental data and one that requires regression (curve fitting) of experimental data. We apply the metrics to
three example problems: thermal decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and com-
pressibility effects on the growth rate of a turbulent free-shear layer. We discuss how the present metrics are easily inter-
pretable for assessing computational model accuracy, as well as the impact of experimental measurement uncertainty on
the accuracy assessment.
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1. Introduction

It is common practice in all fields of engineering and science for comparisons between computational results
and experimental data to be made graphically. The graphical comparisons are usually made by plotting some
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computational system response quantity (SRQ) with the experimentally measured response over a range of
some input parameter. If the computational results generally agree with the experimental data, the computa-
tional model is commonly declared, ‘‘validated’’. Comparing computational results and experimental data on
a graph, however, is only incrementally better than making a qualitative comparison. With a graphical com-
parison, one rarely sees quantification of numerical solution error or quantification of computational uncer-
tainties, e.g., due to variability in modeling parameters, missing initial conditions, or poorly known boundary
conditions. In addition, an estimate of experimental uncertainty is not typically quoted, nor its statistical char-
acter quantified. A graphical comparison also gives little quantitative indication of how the agreement
between computational results and experimental data varies over the range of the independent variable,
e.g., a spatial coordinate, time, or Mach number. Further, a simple graphical comparison is ill suited for
the purpose of quantitative validation because statistical methods are needed to quantify experimental uncer-
tainty. It should be noted that some journals, such as those published by the American Institute of Aeronau-
tics and Astronautics (AIAA) and the American Society of Mechanical Engineers (ASME), now require
improved statements of numerical accuracy and experimental uncertainty.

The increasing impact of computational modeling on engineering system design has recently resulted in an
expanding research effort directed toward developing quantitative methods for comparing computational and
experimental results. In engineering and physics, the form of the computational models is predominantly given
by partial differential equations (PDEs) with the associated initial conditions and boundary conditions.
Although statisticians have developed methods for comparing models (or ‘‘treatments’’) of many sorts, their
emphasis has been distinctly different from the modeling accuracy assessment perspective in engineering. Much

Nomenclature

C confidence level chosen, C = 100(1 � a)%
CI
�ye

��� ���
avg

average confidence indicator associated with the average of the absolute value of the relative esti-
mated error over the range of the experimental data, see either Eq. (19) or (26)

CI
�ye

��� ���
max

confidence interval associated with the maximum absolute value of the relative estimated error
over the range of the experimental data, see either Eq. (21) or (27)

E true error of the computational model as compared to the true mean of the experimental mea-
surements, ym � leE estimated error of the computational model as compared to the estimated mean of the experi-
mental measurements, ym � �yeeE

�ye

��� ���
avg

average of the absolute value of the relative estimated error over the range of the experimental
data, see Eq. (18)eE

�ye

��� ���
max

maximum of the absolute value of the relative estimated error over the range of the experimental
data, see Eq. (20)

F(m1,m2,1 � a) F probability distribution, where m1 is the first parameter specifying the number of degrees
of freedom, m2 is the second parameter specifying the number of degrees of freedom, and 1 � a is
the quantile for the confidence interval chosen

n number of sample (experimental) measurements
s sample (estimated) standard deviation based on n experimental measurements
SRQ system response quantity
tm t distribution with m degrees of freedom, m = n � 1
ta/2m 1 � a/2 quantile of the t distribution with n degrees of freedom, m = n � 1
�ye sample (estimated) mean based on n experimental measurements
ym mean of the SRQ from the computational model
a arbitrarily chosen total area from both tails of the specified distribution
l population (true) mean from experimental measurements
~h vector of coefficients of the chosen regression function, Eq. (22)
~̂h vector of regression coefficients that minimize the error sum of squares, Eq. (24)
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