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Abstract

We present a technique for the rapid and reliable prediction of linear-functional outputs of coercive and non-coercive
linear elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly
convergent global reduced basis approximations — (Galerkin) projection onto a space Wy spanned by solutions of the gov-
erning partial differential equation at N judiciously selected points in parameter space; (ii) a posteriori error estimation —
relaxations of the error-residual equation that provide inexpensive yet sharp bounds for the error in the outputs of interest;
and (iii) offline/online computational procedures — methods which decouple the generation and projection stages of the
approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate
the output of interest and associated error bound — depends only on N (typically very small) and the parametric complexity
of the problem.

In this paper we propose a new “natural norm” formulation for our reduced basis error estimation framework that: (a)
greatly simplifies and improves our inf-sup lower bound construction (offline) and evaluation (online) — a critical ingredi-
ent of our a posteriori error estimators; and (b) much better controls — significantly sharpens — our output error bounds, in
particular (through deflation) for parameter values corresponding to nearly singular solution behavior. We apply the
method to two illustrative problems: a coercive Laplacian heat conduction problem — which becomes singular as the heat
transfer coefficient tends to zero; and a non-coercive Helmholtz acoustics problem — which becomes singular as we
approach resonance. In both cases, we observe very economical and sharp construction of the requisite natural-norm
inf-sup lower bound; rapid convergence of the reduced basis approximation; reasonable effectivities (even for near-singular
behavior) for our deflated output error estimators; and significant — several order of magnitude — (online) computational
savings relative to standard finite element procedures.
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1. Introduction
1.1. Reduced basis approach

Engineering analysis requires the prediction of an (or more realistically, several) “output of interest” s¢ € R
— related to energies or forces, stresses or strains, flowrates or pressure drops, temperatures or fluxes — as a
function of an “input” parameter P-vector u € ¢ C R” — related to geometry, physical properties, boundary
conditions, or loads. These outputs s°(u) are often functionals of a field variable u°(u),

s°(u) = £(u(p)), (1)
where u°(u) € X° — say displacement, velocity, or temperature — satisfies in weak form the p-parametrized
(elliptic linear) partial differential equation

a(u®(p),v;p) = f(v) VoeX©. (2)

Here X° is the appropriate function space, and « (respectively 4, f) are continuous bilinear (respectively, linear)
forms.

In general, we cannot find the exact (our superscript “e” above) solution, and hence we replace s°(u), u°(u)
with a Galerkin finite element approximation, s (u),u” (1): given u € 2,

s (u) = L (W), (3)
where v (1) € X' satisfies
a(u’" (@), v3p) = f(v) YoeXx". (4)

Here X' C X° is a standard finite element approximation subspace of dimension ./". Unfortunately, to
achieve the desired accuracy, ./~ must typically be chosen very large; as a result, the evaluation u — s (u)
is simply too costly in the many-query and real-time contexts often of interest in engineering. Low-order mod-
els — we consider here reduced basis approximations — are thus increasingly popular in the engineering anal-
ysis, parameter estimation, design optimization, and control contexts.

In the reduced basis approach [1-7], we approximate s (u),u" (1) — for some fixed sufficiently large
“truth” A" = A"y — with sp(u), up(p): given pu € 9,

sv (1) = (un (1)), (5)
where uy(u) € Wy satisfies'
aluy (), v ) = f(v) Vv € Wy. (6)

Here Wy is a problem-specific space of dimension N < .47, that focuses on the (typically very smooth) para-
metric manifold of interest — {u""t(u)|u € 2} — and thus enjoys very rapid convergence uy(u) — u't(u) and
hence sy (u) — s (u) as N increases [3,8]. This dramatic dimension reduction, in conjunction with offlinelonline
computational procedures [6,7,9,10], yields very large savings in the many-query and real-time contexts: the on-
line complexity depends only on the size of the reduced basis space, N, which is typically orders of magnitude
smaller than the dimension of the finite element space, ./",.

Our own effort is dedicated to the development of a posteriori error estimators for reduced basis approx-
imations [6,7,11,12]: inexpensive — complexity independent of A" — and sharp error bounds A} (u) such that

"4 (0) — sn ()] < Ay(w) Ve 2.

Absent such rigorous error bounds we cannot efficiently determine if N is too small — and our reduced basis
approximation unacceptably inaccurate — or if N is too large — and our reduced basis approximation unneces-
sarily expensive. (Furthermore, in the nonlinear context, error bounds are crucial in establishing the very exis-
tence of a ““truth” solution u”"t(¢) [13-15].) We cannot determine in “‘real-time” if critical design conditions and
constraints are satisfied — for example, does approximate feasibility spy(u) < C imply “true” feasibility
s (1) < C? And, in fact, we can not even construct an efficient and well-conditioned reduced basis approxi-
mation space Wy [12,16].

! For simplicity in this Introduction, we consider a purely primal approach; we shall subsequently pursue a primal-dual formulation.
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