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Abstract

We present a technique for the rapid and reliable prediction of linear-functional outputs of coercive and non-coercive
linear elliptic partial differential equations with affine parameter dependence. The essential components are: (i) rapidly
convergent global reduced basis approximations – (Galerkin) projection onto a space WN spanned by solutions of the gov-
erning partial differential equation at N judiciously selected points in parameter space; (ii) a posteriori error estimation –
relaxations of the error-residual equation that provide inexpensive yet sharp bounds for the error in the outputs of interest;
and (iii) offline/online computational procedures – methods which decouple the generation and projection stages of the
approximation process. The operation count for the online stage – in which, given a new parameter value, we calculate
the output of interest and associated error bound – depends only on N (typically very small) and the parametric complexity
of the problem.

In this paper we propose a new ‘‘natural norm’’ formulation for our reduced basis error estimation framework that: (a)
greatly simplifies and improves our inf–sup lower bound construction (offline) and evaluation (online) – a critical ingredi-
ent of our a posteriori error estimators; and (b) much better controls – significantly sharpens – our output error bounds, in
particular (through deflation) for parameter values corresponding to nearly singular solution behavior. We apply the
method to two illustrative problems: a coercive Laplacian heat conduction problem – which becomes singular as the heat
transfer coefficient tends to zero; and a non-coercive Helmholtz acoustics problem – which becomes singular as we
approach resonance. In both cases, we observe very economical and sharp construction of the requisite natural-norm
inf–sup lower bound; rapid convergence of the reduced basis approximation; reasonable effectivities (even for near-singular
behavior) for our deflated output error estimators; and significant – several order of magnitude – (online) computational
savings relative to standard finite element procedures.
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1. Introduction

1.1. Reduced basis approach

Engineering analysis requires the prediction of an (or more realistically, several) ‘‘output of interest’’ se 2 R

– related to energies or forces, stresses or strains, flowrates or pressure drops, temperatures or fluxes – as a
function of an ‘‘input’’ parameter P-vector l 2 D � RP – related to geometry, physical properties, boundary
conditions, or loads. These outputs se(l) are often functionals of a field variable ue(l),

seðlÞ ¼ ‘ðueðlÞÞ; ð1Þ
where ue(l) 2 Xe – say displacement, velocity, or temperature – satisfies in weak form the l-parametrized
(elliptic linear) partial differential equation

aðueðlÞ; v; lÞ ¼ f ðvÞ 8v 2 X e. ð2Þ
Here Xe is the appropriate function space, and a (respectively ‘, f) are continuous bilinear (respectively, linear)
forms.

In general, we cannot find the exact (our superscript ‘‘e’’ above) solution, and hence we replace se(l), ue(l)
with a Galerkin finite element approximation, sNðlÞ; uNðlÞ: given l 2 D,

sNðlÞ ¼ ‘ðuNðlÞÞ; ð3Þ
where uNðlÞ 2 XN satisfies

aðuNðlÞ; v; lÞ ¼ f ðvÞ 8v 2 XN. ð4Þ
Here XN � X e is a standard finite element approximation subspace of dimension N. Unfortunately, to
achieve the desired accuracy, N must typically be chosen very large; as a result, the evaluation l! sNðlÞ
is simply too costly in the many-query and real-time contexts often of interest in engineering. Low-order mod-
els – we consider here reduced basis approximations – are thus increasingly popular in the engineering anal-
ysis, parameter estimation, design optimization, and control contexts.

In the reduced basis approach [1–7], we approximate sNðlÞ; uNðlÞ – for some fixed sufficiently large
‘‘truth’’ N ¼Nt – with sN(l), uN(l): given l 2 D,

sN ðlÞ ¼ ‘ðuNðlÞÞ; ð5Þ
where uN(l) 2WN satisfies1

aðuN ðlÞ; v; lÞ ¼ f ðvÞ 8v 2 W N . ð6Þ
Here WN is a problem-specific space of dimension N �Nt that focuses on the (typically very smooth) para-
metric manifold of interest – fuNtðlÞjl 2 Dg – and thus enjoys very rapid convergence uNðlÞ ! uNtðlÞ and
hence sNðlÞ ! sNtðlÞ as N increases [3,8]. This dramatic dimension reduction, in conjunction with offline/online

computational procedures [6,7,9,10], yields very large savings in the many-query and real-time contexts: the on-
line complexity depends only on the size of the reduced basis space, N, which is typically orders of magnitude
smaller than the dimension of the finite element space, Nt.

Our own effort is dedicated to the development of a posteriori error estimators for reduced basis approx-
imations [6,7,11,12]: inexpensive – complexity independent of Nt – and sharp error bounds Ds

N ðlÞ such that

jsNtðlÞ � sN ðlÞj 6 Ds
N ðlÞ 8l 2 D.

Absent such rigorous error bounds we cannot efficiently determine if N is too small – and our reduced basis
approximation unacceptably inaccurate – or if N is too large – and our reduced basis approximation unneces-
sarily expensive. (Furthermore, in the nonlinear context, error bounds are crucial in establishing the very exis-

tence of a ‘‘truth’’ solution uNtðlÞ [13–15].) We cannot determine in ‘‘real-time’’ if critical design conditions and
constraints are satisfied – for example, does approximate feasibility sN(l) 6 C imply ‘‘true’’ feasibility
sNtðlÞ 6 C? And, in fact, we can not even construct an efficient and well-conditioned reduced basis approxi-
mation space WN [12,16].

1 For simplicity in this Introduction, we consider a purely primal approach; we shall subsequently pursue a primal–dual formulation.
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