

Available online at www.sciencedirect.com

Tetrahedron 62 (2006) 5717-5724

Tetrahedron

Intramolecular electrophilic aromatic substitution of α-alkylcinnamaldehydes affording 1-alkoxy-2-alkylindenes

Takashi Jobashi,^a Atsushi Kawai,^a Satomi Kawai,^a Katsuya Maeyama,^a Hideaki Oike,^a Yasuhiko Yoshida^b and Noriyuki Yonezawa^{a,*}

^aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei,

Tokyo 184-8588, Japan

^bDepartment of Applied Chemistry, Graduate School of Engineering, Toyo University, Kawagoe, Saitama 350-8585, Japan

Received 27 February 2006; revised 18 March 2006; accepted 23 March 2006 Available online 27 April 2006

Abstract—Treatment of α -alkylcinnamaldehydes with orthoesters, alcohols, or thiols in the presence of BF₃·OEt₂ induces an intramolecular electrophilic aromatic substitution reaction to afford 1-alkoxy-2-alkylindenes. The reaction mechanisms of the indene formation have been elucidated on the basis of the reaction behaviors of β -deuterated α -methylcinnamaldehyde and the NMR studies of the reaction mixture. The transformation process involves successive reactions, i.e., alkoxylation of the carbonyl carbon of α -alkylcinnamaldehydes to form acetals, elimination of alkoxide from the acetals to give alkoxycarbenium ion and γ -alkoxyallyl cation, and intramolecular electrophilic arylation to afford the indene ring structure.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Indene derivatives are frequently found in natural products and widely employed as medicinal compounds.¹⁻⁵ In accordance with this, indene derivatives have attracted organic and pharmaceutical chemists. One of the conventional approaches toward producing the indene framework is acidmediated cyclodehydration reaction of aryl ketones.⁶⁻⁸ Some 1-phenylallyl cations also undergo the intramolecular cyclization to afford the corresponding indenes.^{9–12} In these cases, the cyclization proceeds via electrophilic aromatic substitution mechanisms. While various substituted indenes have so far been prepared by these methods, synthesis of 1-indenols and 1-alkoxyindenes through the electrophilic aromatic substitution process has not been reported. Recently, transition metal catalyzed coupling reactions of alkynes with ortho-carbonylated arylhalides¹³ or arylboron compounds¹⁴ have been developed as an effective method for the preparation of 1-indenols. The transition metal catalyzed annulation reaction has also been applied for the construction of indenes.^{15,16} Nevertheless, an efficient and practical means to construct 1-alkoxyindene frameworks has been an ongoing challenge. Almost all of the syntheses of 1-alkoxy-indenes are performed via multi step transformations^{5,17} or low chemoselective one-pot preparations,¹⁸ except for a recent report of Pd-complex catalyzed intramolecular cyclization of alkynylbenzaldehyde dialkyl acetals to form dialkoxyindenes.¹⁹

During the study on the acid mediated oxidative crossed aldol type reaction of aliphatic ethers with benzaldehyde dimethyl acetal giving α , β -unsaturated carbonyl compounds,²⁰ we have found that several ethers afford 1-alkoxy-2-alkylindenes in place of α , β -unsaturated carbonyl compounds.²¹ Our preliminary study indicated that the produced α , β -unsaturated carbonyl compounds may be further transformed to 1-alkoxy-2-alkylindenes during the reaction.

In consequence, we have investigated the above reaction aiming at the development of the efficient one-pot synthesis of 1-alkoxyindenes to reveal the structural requirements and the activation process. In this paper, the reaction features, the scope and limitations, and the reaction mechanisms of the transformation of α -alkylcinnamaldehydes into 1-alkoxyindenes are discussed.

2. Results and discussion

2.1. The reaction behaviors and characterization of the products

We have recently reported that the BF₃ mediated reaction of $bis(\beta-alkylethyl)$ ethers with benzaldehyde dimethyl acetal

Keywords: 1-Alkoxy-2-alkylindene; α -Alkylcinnamaldehyde; Alkoxylation; Intramolecular electrophilic arylation; Acetal.

^{*} Corresponding author. Tel.: +81 42 388 7053; fax: +81 42 388 7291; e-mail: yonezawa@cc.tuat.ac.jp

affords 1-alkoxy-2-alkylindenes.²¹ As some kinds of aliphatic ethers yield α , β -unsaturated carbonyl compounds in the presence of benzaldehyde dimethyl acetal and BF₃ etherates, α , β -unsaturated carbonyl compounds were obviously regarded as the precursors for the 1-alkoxyindene formation reaction.^{20,21} However, the treatment of BF₃·OEt₂ against α -methylcinnamaldehyde (1) did not afford any indenes (Scheme 1, Route 1). In this case, aldehyde 1 was recovered. In contrast, addition of trimethyl orthoformate [HC(OMe)₃ (2)] to this reaction system has been found to accomplish the transformation affording 1-methoxy-2-methylindene (3a) in a good yield (Scheme 1, Route 2). These facts demonstrate that α -methylcinnamaldehyde (1) by itself is not the direct precursor of 1-methoxyindene 3a, but has a capability to form 1-methoxy-2-methylindene (3a) with the aid of HC(OMe)₃ (2).

Table 1 shows the results of the reaction of α -methylcinnamaldehyde (1) with HC(OMe)₃ (2) in the presence of several acidic mediators.

Table 1. Reaction of α -methylcinnamaldehyde (1) with HC(OMe)₃ (2) in the presence of several acidic mediators^a

HC(OMe)₂

Ũ

Acidic

mediator

1 10-

	$\begin{array}{c} Ph^{\prime} \qquad \qquad H + 2 \\ 1 \\ Me \end{array}$		CH ₂ Cl ₂ 25 °C, 3 h 3a OMe		
Entry	2/1 (mol/mol)	Acidic mediator	Acidic mediaor/ 1 (mol/mol)	NMR yield/% ^b	
1	1	BF ₃ ·OEt ₂	1	60	
2	2	BF ₃ ·OEt ₂	1	72	
3	4	BF ₃ ·OEt ₂	1	79	
4	4	BF ₃ ·OEt ₂	0.5	37	
5	4	BF ₃ ·OEt ₂	2	74	
6	4	BF ₃ ·OMe ₂	1	57	
7	4	AlCl ₃	1	8	
8	4	SnCl ₄	1	5	
9	4	$ZnCl_2$	1	32	
10	4	H_2SO_4	1	35	
11	4	CF ₃ SO ₃ H	1	68	

 a Reaction conditions: $\alpha\text{-methylcinnamaldehyde}$ (1), 0.5 mmol; CH_2Cl_2, 2.5 mL; 25 °C, 3 h.

^b Determined by ¹H NMR spectrum with the use of nitrobenzene as internal standard.

In the presence of one equimolar amount of $BF_3 \cdot OEt_2$, the treatment of α -methylcinnamaldehyde (1) with four equimolar amounts of HC(OMe)₃ (2) afforded 1-methoxyindene **3a** in a high yield (79%, Entry 3). However, the reaction was retarded with the decrease in the amount of HC(OMe)₃ (2) (Entries 1 and 2). In addition, the use of catalytic amount of BF₃·OEt₂ resulted in a lower yield of 1-methoxyindene **3a** (Entry 4), while the treatment with excess amount of BF₃·OEt₂ afforded 1-methoxyindene **3a** in a comparative yield (Entry 5).

Among the acidic mediators employed, $BF_3 \cdot OEt_2$ afforded 1-methoxy-2-methylindene (**3a**) in the highest yield (Entry 3). Acidic mediators except $BF_3 \cdot OEt_2$ gave aldehyde **1** and/or unidentified products that have broad signals of aromatic ring protons and alkyl group ones in ¹H NMR spectra (Entries 6–10), though triflic acid also gave 1-methoxyindene **3a** in a good yield (Entry 11). These by-products are probably composed of some kinds of polymeric compounds formed via cationic polymerization of 1-alkoxyindene²² and/or α -methylcinnamaldehyde (**1**)²³ produced in the early stage of the reaction.

2.2. Effect of the alkoxylating agent

Generally, treatment of orthoester against aldehyde in the presence of acidic mediator is known to give acetal.²⁴ In other words, acetals of α -alkylcinnamaldehydes were considered to be the actual precursors of the 1-alkoxyindenes in this transformation. In fact, when α -methylcinnamaldehyde dimethyl acetal (4) was treated with BF₃·OEt₂ in the absence of HC(OMe)₃ (2), 1-methoxy-2-methylindene (**3a**) was also formed in a good yield (Scheme 2). Therefore, 1-alkoxyindenes must be produced via the acetal of α -alkylcinnamaldehyde or at least its equivalent.

Scheme 2.

Acetals are also synthesized by the reaction of aldehyde with alcohol or thiol.²⁴ Therefore, alcohols and thiols are expected to react with aldehyde 1 affording the corresponding indenes. Table 2 shows the results of the reaction using other hydroxy compounds 5 or thiophenol (6). When MeOH (5a)

Table 2. Reaction of α -methylcinnamaldehyde (1) with hydroxy compounds 5 or thiophenol (6) in the presence of BF₃·OEt₂^a

Entry	5 or 6	5 or 6/1 (mol/mol)	BF ₃ ·OEt ₂ /1 (mol/mol)	3	NMR yield/% ^b
1 ^c	MeOH 5a	4	1	3a	Trace
2	5a	10	10	3a	69
3	<i>i</i> -PrOH 5b	10	10	3b	54
4	<i>t</i> -BuOH 5 c	10	10	3c	0
5	PhOH 5d	10	10	3d	0
6	PhCH ₂ OH 5e	10	10	3e	0
7	PhCH ₂ CH ₂ OH 5f	10	10	3f	56
8	BrCH ₂ CH ₂ OH 5g	10	10	3g	30
9	PhSH 6	10	10	3ĥ	59

^a Reaction conditions: aldehyde **1**, 0.5 mmol; 25 °C, 3 h.

^b Determined by ¹H NMR spectrum with the use of nitrobenzene as internal standard.

^c Reaction conditions: aldehyde 1, 0.5 mmol; CH₂Cl₂, 2.5 mL; 25 °C, 3 h.

Download English Version:

https://daneshyari.com/en/article/5230190

Download Persian Version:

https://daneshyari.com/article/5230190

Daneshyari.com