Tetrahedron 63 (2007) 6755-6763

Tetrahedron

Enantioselective synthesis of *cis-*\alpha-substituted cycloalkanols and *trans-*cycloalkyl amines thereof

Rosario Fernández, ^{a,*} Abel Ros, ^b Antonio Magriz, ^b Hansjörg Dietrich ^c and José M. Lassaletta ^{b,*}

^aDepartamento de Química Orgánica, Universidad de Sevilla, Apdo. de correos 1203, 41071-Seville, Spain ^bInstituto de Investigaciones Químicas (CSIC-USe), Americo Vespuccio s/n, Isla de la Cartuja, E-41092 Seville, Spain ^cBayer CropScience GmbH, Industriepark Höchst G386, 65926 Frankfurt am Main, Germany

> Received 26 March 2007; revised 19 April 2007; accepted 23 April 2007 Available online 4 May 2007

Abstract—The diastereo- and enantioselective syntheses of *trans*-cycloalkyl amines was accomplished through a three-step sequence consisting of: (1) asymmetric transfer hydrogenation through dynamic kinetic resolution of bicyclic and monocyclic α -substituted ketones using HCO_2H/Et_3N as the hydrogen source and TsDPEN-based Ru(II) catalysts, (2) nucleophilic hydroxyl to azide substitution of the resulting *cis*-cycloalkanols using diphenyl phosphoryl azide under modified Mitsunobu conditions, and (3) reduction of the *trans*-azide intermediates with LiAlH₄ of PPh₃/H₂O to the desired targets. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Optically active amines are important building blocks for the synthesis of a variety of biologically active molecules, among other industrial applications. Consequently, numerous methods have emerged in the past few years for their preparation in enantiomerically pure or enriched form.¹ In spite of the considerable advances in asymmetric synthesis and catalysis, the resolution of racemates remains as the most important approach used by the chemical industry for the preparation of this type of compounds. In this context, dynamic kinetic resolution (DKR),² not limited by the theoretical 50% maximum vield associated with conventional separation techniques or classical kinetic resolutions, is established as the most efficient technique for the resolution of racemates wherever it is applicable. After the seminal work by the Noyori³ and Genêt⁴ groups on the catalytic hydrogenation of β-keto esters, the hydrogenation through DKR has found a number of applications and stimulated the development of related reactions, including the hydrogenation or transfer hydrogenation⁵ of several types of monocyclic⁶ and bicyclic⁷ cycloalkanones.

On the other hand, cyclic chiral amines are key structural elements in several bioactive compounds such as inhibitors of acyl CoA:cholesterol acyltransferase (ACAT),⁸ positive

Keywords: Asymmetric catalysis; Amines; Transfer hydrogenation; Dynamic kinetic resolution.

allosteric modulators at the AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptors, acetylcholine esterase (AChE), and monoamine oxidase (MAO) inhibitors with potential for treatment of Alzheimer's and Parkinson's diseases, 10 compounds with potent hypoglycemic activity, 11 etc. (Fig. 1).

Inspired by the above-disclosed precedents, we have recently reported on the transfer hydrogenation of α -substituted cyclic ketimines as the first DKR process involving reduction of C=N bonds via DKR. ¹² In order to complement this procedure, that is limited to the synthesis of cis products, we envisaged that the corresponding *trans*- α -substituted cyclic amines could be readily available from α -substituted ketones

Hypoglycaemic activity

Figure 1. Bioactive cyclic amines.

AChE, MAO Inhibitors

^{*} Corresponding authors. Tel.: +34 954559727; fax: +34 954624960 (R.F.); tel.: +34 954489560; fax: +34 954460565 (J.M.L.); e-mail addresses: ffernan@us.es; jmlassa@iiq.csic.es

through a three-step synthetic route consisting of: (1) asymmetric transfer hydrogenation to cis- α -substituted cycloalkanols, (2) classical¹³ or modified¹⁴ Mitsunobu reaction with inversion of the configuration to trans-azido intermediates, and (3) reduction of the latter to the desired cycloalkylamines (Scheme 1). In this paper, we report the results collected on the basis of this hypothesis and its extension to the synthesis of cyclic cis-1,2-diols and trans-1,2-fluoroamines.

$$\begin{array}{c|c} X & 1 & Mitsunobu \\ R' & R & 2) & Reduction \\ \hline R' & R' & OH \\ \end{array}$$

n = 0.1; R = alkyl, F, OAc; X = CH₂, O

Scheme 1. Retrosynthetic analysis for *cis*-cycloalkanols and *trans*-cycloalkyl amines thereof.

2. Results and discussion

For the synthesis of the desired cis-cycloalkanols, initial experiments were performed with readily available racemic 2,6-dimethylindan-1-one (\pm)-1 using 0.5 mol % of [Rh-ClCp*(1R,2S)-cis-1-aminoindan-2-ol] [(R,S)-II] as the catalyst and ⁱPrONa/ⁱPrOH as the hydrogen source. ¹⁵ The expected 2,6-dimethylindan-1-ol 6 was isolated in a moderate 45% yield as a 1:3 cis/trans diastereomeric mixture (Scheme 2), suggesting a thermodynamically controlled formation of the products. On the other hand, the use of Noyori/Ikariya [RuCl(TsDPEN)(p-cymene)] catalysts (R,R)- or (S,S)-I in 5:2 HCO₂H/Et₃N azeotropic mixture as the solvent and hydrogen source (method \mathbf{A})¹⁶ was successfully applied to the reduction of racemic indanones (\pm) -1,2 into the desired cis-(1S,2S)-indan-1-ol derivatives ¹⁷ 6 and 7, obtained in excellent yields and stereoselectivities (Table 1, entries 1 and 2). No reaction was observed from α -aryl substituted indanones, even using substrate/catalyst ratio (S/C)=50 or 1.2:1 HCO₂H/Et₃N mixture (method **B**). 18 This result contrasts with the behavior of monocyclic substrates (see below) and

$$(5,S)-I, S/C \ 200:1 \\ R \longrightarrow Me \qquad (S,S)-I, S/C \ 200:1 \\ HCO_2H/Et_3N \ 5:2 \qquad R \longrightarrow Me \\ OH \qquad (S,S)-I, S/C \ 200:1 \\ R \longrightarrow Me \qquad (S$$

Scheme 2. Asymmetric transfer hydrogenation of (\pm) -1–5 using (S,S)-I catalyst and 5:2 HCO₂H/Et₃N azeotropic mixture as hydrogen source.

(R,S)-II

also with that described by Wills and co-workers for 1-aryl-tetral-2-one derivatives,⁷ and can be explained if a large proportion of unreactive enolic form is present in the keto/enol equilibrium in this case.

The reactions of tetral-1-one and chroman-4-one derivatives (\pm) -3,4 were accomplished using (S,S)-I as the catalysts and 5:2 HCO₂H/Et₃N azeotropic mixture to afford, respectively, cis-(1S,2S)-2-methyltetral-1-ol¹⁹ (8) and cis-(3S,4S)-3methylchroman-4-ol (9) in high yields, good *cis/trans* ratios, and excellent enantioselectivities (Table 1, entries 3 and 4). The longer reaction times required for completion of the reactions and the lower diastereomeric excesses observed with respect to indanone derivatives (\pm) -1,2 can be explained by a less efficient epimerization of the less reactive (R)-3 or (R)-4 enantiomers. This fact can be in turn tentatively attributed to the lower acidity of the α -proton of tetralone and chromanone rings. Finally, it should also be mentioned that the seven-membered 2-methyl benzosuberone (\pm)-5 showed a very poor reactivity under these conditions. By increasing the catalyst loading to 2 mol %, the corresponding alcohol 10 could be isolated in only 30% yield and with moderate diastereo- and enantioselectivity (entry 5).

The behavior of 2-acetoxyindan-1-one (\pm) -(11) and 2-acetoxytetral-1-one (\pm) -(13) as representatives of α -oxygenated cyclic ketones was investigated next. In this cases, use of (S,S)-I or (R,R)-I catalysts and 1.2:1 HCO₂H/Et₃N mixture as hydrogen source and reaction medium afforded the best results concerning reactivity and stereoselectivity, a result in line with that previously observed for the related α -fluoro ketones. The primary products from these reactions were mixture of the expected cis-2-acetoxycycloindan-1-ols and cis-1-acetoxycycloindan-2-ols, formed through well established 1,2-migration of the acetyl group (Scheme 3). The corresponding cis vicinal diols 12^{21} and 14^{22} were obtained by in situ deacetylation using NaOH (1 M)/MeOH (Table 1, entries 6 and 7).

OAC
$$(R,R)$$
-I $(cat.)$
 (t) -11

NaOH 1M
MeOH
OH
 $(1S,2R)$ -12

NaOH 1M
OH
 (t) -13

NaOH 1M
MeOH
OH
 $(1R,2S)$ -14

Scheme 3. Synthesis of diols 12 and 14.

Download English Version:

https://daneshyari.com/en/article/5230238

Download Persian Version:

https://daneshyari.com/article/5230238

<u>Daneshyari.com</u>