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Abstract

High-order triangle-based discontinuous Galerkin (DG) methods for hyperbolic equations on a rotating sphere are pre-
sented. The DG method can be characterized as the fusion of finite elements with finite volumes. This DG formulation uses
high-order Lagrange polynomials on the triangle using nodal sets up to 15th order. The finite element-type area integrals
are evaluated using order 2N Gauss cubature rules. This leads to a full mass matrix which, unlike for continuous Galerkin
(CG) methods such as the spectral element (SE) method presented in Giraldo and Warburton [A nodal triangle-based spec-
tral element method for the shallow water equations on the sphere, J. Comput. Phys. 207 (2005) 129–150], is small, local
and efficient to invert. Two types of finite volume-type flux integrals are studied: a set based on Gauss–Lobatto quadrature
points (order 2N � 1) and a set based on Gauss quadrature points (order 2N). Furthermore, we explore conservation and
advection forms as well as strong and weak forms. Seven test cases are used to compare the different methods including
some with scale contractions and shock waves. All three strong forms performed extremely well with the strong conserva-
tion form with 2N integration being the most accurate of the four DG methods studied. The strong advection form with
2N integration performed extremely well even for flows with shock waves. The strong conservation form with 2N � 1 inte-
gration yielded results almost as good as those with 2N while being less expensive. All the DG methods performed better
than the SE method for almost all the test cases, especially for those with strong discontinuities. Finally, the DG methods
required less computing time than the SE method due to the local nature of the mass matrix.
Published by Elsevier Inc.

Keywords: Dubiner; Electrostatics; Fekete; Finite element; Finite volume; Jacobi; Koornwinder; Lagrange; Penalty method; Polynomial;
Proriol; Riemann solver; Rusanov flux; Shallow water equations; Spherical geometry; Triangular

1. Introduction

On spherical domains, the most natural solution strategy is to use spherical harmonics (spectral transform
methods) on a Gaussian grid where the longitude and latitude are the spherical coordinates. However, choos-
ing spherical harmonics eliminates any possibility of exploiting adaptive solution strategies. Furthermore, for
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solving relevant problems the numerical model must be run in a distributed-memory mode (such as with the
message-passing interface). It is well known that the cost of spherical harmonics is OðN 3

latÞ where Nlat denotes
the number of grid points in the latitudinal direction (south to north pole).

On the other hand, local methods (e.g., finite differences, elements, and volumes) cost on the order of
OðN 2

pÞ, where Np denotes the number of total grid points. If either adaptivity or unstructured grids are to
be used then this now only leaves finite elements (FE) and finite volumes (FV) as the only two viable options.
Typically, a choice has had to be made between high order accuracy and local conservation.

If high order accuracy (beyond 2nd order) is selected as the main criterion then the FE method must be the
method selected. High order FE methods are typically referred to as spectral elements (SE) and we shall use
these two terms interchangeably throughout this manuscript. FE/SE methods have shown to be quite capable
of producing very accurate solutions for flows on rotating spheres (see [16]) provided that the solutions are
smooth. However, if the solutions are non-smooth then FE/SE methods do not perform as well. We showed
this in [13] in the context of unstructured quadrilateral elements and we show this in Section 5 for unstructured
triangular elements.

However, if local conservation is the main criterion then FV methods must be chosen. FV methods have
been shown to be quite effective in handling discontinuous flows on rotating spheres (see [24]). However,
FV methods are at most second order accurate on unstructured triangular grids (see [10]); higher order recon-
structions are only readily available for Cartesian (structured) grids and only using quadrilaterals.

Thus if both high order accuracy and local conservation on unstructured triangular grids are sought then
the natural choice is the discontinuous Galerkin (DG) method. In essence, the DG method extracts the best
features of FE and FV methods and fuses them into a powerful method capable of delivering high order accu-
racy in conjunction with local conservation. In [13], we introduced the first DG formulation for flows on a
rotating sphere using much of the same machinery originally developed for SE methods (see [12]); the main
difference being that we replaced the C0 continuity condition of SE methods with a discontinuity at the ele-
ment interfaces resolved via jump conditions in a similar vein to that of penalty methods (see [4]). Because
the DG method shares much in common with FV methods then much of the same machinery developed
for FV methods such as Riemann solvers, total variation diminishing (TVD) schemes, and nonlinear flux
limiters can be applied to DG methods which then renders the solutions not only high-order accurate but also
monotonicity preserving as well.

In addition to offering local conservation, high order accuracy, monotonicity, and adaptivity, the DG
method also offers efficiency and natural parallelization especially for unstructured triangular grids. To clarify
this point, in Fig. 1 we show the discrete stencil required by both the DG and SE methods. The DG stencil is
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Fig. 1. The discrete stencil of the triangle, T, for the DG method (solid triangles) and the SE method (solid and dashed triangles).
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