

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 9356-9367

Catalytic processes for the functionalisation and desymmetrisation of malononitrile derivatives

Ronald Grigg,^{a,*} Anuch Hasakunpaisarn,^a Colin Kilner,^a Boonsong Kongkathip,^b Ngampong Kongkathip,^b Alan Pettman^c and Visuvanathar Sridharan^a

^aMolecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, Leeds LS2 9JT, UK ^bDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^cProcess R and D, Pfizer Ltd, Sandwich, Kent CT13 9NJ, UK

Received 1 June 2005; revised 6 July 2005; accepted 15 July 2005

Available online 15 August 2005

Abstract—Palladium catalysed 3-component cascades are described involving aryl/heteroaryl iodides, allene and benzyl malononitrile. Catalytic monohydration and monoamination of malononitriles to the corresponding monoamides and monoamidines are also described together with several examples of mono-oxazoline formation.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

 π -Allylpalladium (II) complexes are important intermediates in a plethora of catalytic reactions including allylic substitutions,¹ allylic oxidation² and 1,4-oxidation of conjugated dienes.³ These reactions all involve nucleophlic attack of carbon or heteroatomic nucleophiles on the π -allyl moiety. Heteroatom nucleophiles, including RCO₂H,⁴ H₂O,⁵ ROH⁶ and amines⁷ (primary and secondary), have proved particularly valuable in complex molecule synthesis. Carbon nucleophiles include malonates,⁸ malononitriles,⁹ and ketones.¹⁰ We and others have been involved in generating π -allylpalladium (II) intermediates via aryl/ heteroaryl iodides and allenes in the presence of palladium(0)¹¹⁻¹⁵ (Scheme 1).

Scheme 1.

In the Pd(0) catalysed reactions of allene **1** with aryl/ heteroaryl iodides, carbopalladation of allene with ArPdI

Keywords: 3-Component cascade; Palladium catalysis; Hydration; Amidines; Oxazolines.

^{*} Corresponding author. Tel.: +44 113 343 6501; fax: +44 113 343 6530; e-mail: r.grigg@leeds.ac.uk

^{0040–4020/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2005.07.048

In this paper, we report the palladium catalysed 3-component cascade synthesis of 2-benzyl aryl/heteroaryl allyl malononitriles utlising benzyl malononitrile as the pronucleophile (Scheme 1) and the subsequent selective desymmetrisation of malononitrile derivatives by catalytic monohydration, and monoamination.

1.1. 3-Component cascades

Iodobenzene (1.5 mmol) reacted with allene (1 bar), benzyl malononitrile (1 mmol), Pd(OAc)₂ (5 mol%),

Table 1. Palladium catalysed 3-component cascades^a

triphenylphosphine (10 mol%) and Cs_2CO_3 (2 mol equiv) in THF (10 ml) at 90 °C for 14 h to afford **6** in 85% yield (Table 1, entry 1). Electron rich, electron poor, and neutral aryl iodides were successfully employed in the cascade process affording **6–11** in 60–73% yield (Table 1, entries 2–6). However, 3-iodopyridine, 1-methyl-5-iodoindole and 5-iodo-1,3-dimethyluracil resulted in moderate yields of **12–14** (Table 1, entries 7–9). We further optimized reaction conditions using 3-iodopyridine as the model compound. Decreasing the reaction temperature to 70 °C afforded **12** in 67% yield whilst changing the base to K_2CO_3 afforded a

Entry	Ar–I	Product	Yield (%) ^b	
			Cs ₂ CO ₃	K ₂ CO ₃
1		NC CN	85	87
2	Me		73	78
3	MeO	7 MeO	66	80
4	⟨I		66	80
5	MeO ₂ C	9 MeO ₂ C	66	83
6	I		60	75
7			44	80 [°]
8	I N Me	NC CN Me 12	59	70 [°]
9	MeN V N Me	MeN MeN Me Me Me	40	85°

^a All the reactions were carried out in THF at 100 °C for 14 h in a Schlenk tube using Pd(OAc)₂ (10 mol%), PPh₃ (20 mol%), base (2 mol equiv), allene (1 bar), aryl iodide (1.5 mmol) and benzyl malononitrile (1 mmol).

^b Isolated yield.

° 70 °C, 14 h.

Download English Version:

https://daneshyari.com/en/article/5232450

Download Persian Version:

https://daneshyari.com/article/5232450

Daneshyari.com