

Tetrahedron 62 (2006) 737-745

Tetrahedron

The synthesis and electronic absorption spectra of 3-phenyl-3(4-pyrrolidino-2-substituted phenyl)-3*H*-naphtho[2,1-*b*]pyrans: further exploration of the *ortho* substituent effect

Christopher D. Gabbutt, B. Mark Heron* and Alicia C. Instone

Department of Colour and Polymer Chemistry, The University of Leeds, Leeds LS2 9JT, UK

Received 21 July 2005; revised 16 September 2005; accepted 29 September 2005

Available online 28 October 2005

Abstract—Introduction of a substituent into a sterically demanding 2-position of a 3-(4-pyrrolidinophenyl) ring of a 3,3-diaryl-3*H*-naphtho[2,1-*b*]pyran results in the generation of an additional short wavelength absorption band leading to organic photochromes that appear as dull shades of orange and red.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The electrocyclic ring-opening-ring-closing sequence of the isomeric diaryl substituted naphthopyrans 1 and 2 (Scheme 1) with the accompanying colour change has rendered these compounds invaluable to the ophthalmic photochromic sun and contact lens industries. Other applications of photochromic naphthopyrans, for example, in fuel and security markers, as UV light intensity indicators and as hair dyes have been documented.

Optimising the photochromic response of these T-type⁶ naphthopyrans has attracted significant academic⁷ and industrial attention.¹ Perhaps the simplest and most significant means to achieve control of the hue and persistence of the ring-opened isomer of the naphthopyran system is through the manipulation of substituents located on the geminal diaryl unit.⁸ The intensification of

the photo-generated colour of 2 has been accomplished through the introduction of a group into at least one of the ortho positions of one of the aryl groups attached to 3-C, for example, 3.9 This phenomenon has been attributed to a steric effect in which the ortho substituent hinders the thermal ring closure of the photo-generated coloured species to the colourless pyran form; a feature that has recently been correlated to the size of the introduced group in 4. 10 The net result of this steric effect is a photostationary state in which there is an appreciable concentration of the ring-opened form, which is manifest in an intensification of the developed colour. Further manipulation of the photochromism of naphthopyrans has been accomplished through steric interactions between a terminal pyrrolidine donor function and neighbouring substituents, for example, 5. In this instance, as the magnitude of these steric interactions increase λ_{max} is shifted hypsochromically until a maximum interaction is observed with 5, $X = Br.^{11}$

Scheme 1.

Keywords: Naphthopyrans; Photochromism; Steric effects; Dual absorption bands; Synthesis.

^{*} Corresponding author. Tel.: +44 113 3432925; fax: +44 113 3432947; e-mail: b.m.heron@leeds.ac.uk

We were interested in exploring novel naphthopyrans of type 6 in which the influence of alternating the nature of X, located in a sterically demanding position in the main electron donating aryl moiety, upon the photochromic response could be investigated.¹²

2. Results and discussion

In order to synthesise 6 we required access to a range of 2-substituted 4-pyrrolidinobenzophenones. Thus, the dihalogenobenzoic acids 7a,b were accessed by diazonium salt chemistry from 4-chloroanthranilic acid. ¹³ Conversion to the acid chlorides and a subsequent Friedel-Crafts reaction with benzene afforded the benzophenones **8a**,**b** (Scheme 2). 2-Chloro-4-fluorobenzophenone 8c was obtained in a similar manner from 2-chloro-4-fluorobenzoic acid. Using this Friedel-Crafts protocol with 4-chloro-2-methoxybenzoic acid resulted in concomitant demethylation and benzoylation¹⁴ to give 4-chloro-2-hydroxybenzophenone **8e**. O-Methylation of 8e was only accomplished in low yield using excess MeI and powdered KOH in DMSO to afford the 2-methoxybenzophenone **8f**. 4-Chloro-2-methybenzophenone was accessed in 76% yield by the action of the Grignard reagent derived from 2-bromo-5-chlorotoluene on the Weinreb amide, ^{11,15} *N*-methoxy-*N*-methylbenzamide.

We have previously employed the nucleophilic substitution of an activated halogen atom from benzophenones to afford aminosubstituted benzophenones. However, the present benzophenones, **8a–d**, contain two halogen atoms that are activated towards nucleophilic displacement. Heating **8d** in an excess of pyrrolidine resulted in the formation of 2,4-dipyrrolidinobenzophenone **9** (72%) and

4-fluoro-2-pyrrolidinobenzophenone **10a** (17%) which were separated by column chromatography. None of the desired benzophenone 11d was isolated from the crude product. It is likely that the initial reaction involves preferential displacement of the 4-fluorine atom of 8d to afford 2-fluoro-4-pyrrolidinobenzophenone 11d together with a smaller amount of 10a as a consequence of the simultaneous but less favoured displacement of the 2-fluorine atom. However, under prolonged heating, the 2-fluorine atom of 11d, although electronically deactivated towards displacement due to the 4-pyrrolidine substituent diminishing the electron withdrawing influence of the C=O group, is still sufficiently activated towards displacement leading to 9. Displacement of the 4-fluorine atom from 10a is less likely since the steric interaction between the 2-pyrrolidine unit and the C=O group result in rotation of the C=O unit out of conjugation with the fluorophenyl ring, which renders the F atom inactive towards displacement. A modified version of this protocol was next investigated in which 1 equiv of pyrrolidine was employed with added K₂CO₃ base (Method 1). Termination of the reaction after ~ 1 h gave a product from which 10a (28%) and the desired 11d (37%) were isolated by column chromatography. Repeating this protocol with benzophenones 8a-c provided access to the desired 2-substituted 4-pyrrolidinobenzophenones though in each case their formation was accompanied by varying amounts of the 2-pyrrolidino substituted benzophenone 10a or 10b and 9 (Scheme 3). The conversion of benzophenones 8f,g to 11f,g, respectively, was particularly sluggish requiring 4 days heating in the presence of DMSO to effect even a mediocre yield of the products (Method 2). Interestingly the formation of 11f was accompanied by some of the demethylated compound 11e (19%).

Reagents: (i) c.HCl, NaNO₂, H₂O, 0 °C then either CuBr or KI and heat; (ii) SOCl₂, heat; (iii) AlCl₃, PhH, heat; (iv) Mg, anhyd. Et₂O, heat; (v) *N*-methoxy-*N*-methylbenzamide, anhyd. Et₂O, heat then aq. HCl; (vi) excess MeI, KOH, DMSO, 40 °C

Download English Version:

https://daneshyari.com/en/article/5232710

Download Persian Version:

https://daneshyari.com/article/5232710

<u>Daneshyari.com</u>