
User interfaces metamodel based on graphs$

Paulo Roberto Lumertz a,b,n, Leila Ribeiro a, Lucio Mauro Duarte a

a Informatics Institute, Federal University of Rio Grande do Sul (UFRGS), Brazil
b Quantiza Tecnologia da Informação Ltda, Brazil

a r t i c l e i n f o

Article history:
Received 30 October 2014
Received in revised form
23 April 2015
Accepted 15 October 2015
Available online 17 November 2015

Keywords:
Metamodel
Graphs
Graph transformation
User interface
User interface patterns

a b s t r a c t

Information systems are widely used in all business areas. These systems typically integrate a
set of functionalities that implement business rules and maintain databases. Users interact with
these systems and use these features through user interfaces (UI). Each UI is usually composed
of menus where the user can select the desired functionality, thus accessing a new UI that
corresponds to the desired feature. Hence, a system normally contains multiple UIs. However,
keeping consistency between these UIs of a system from a visual (organisation, component
style, etc.) and behavioral perspective is usually difficult. This problem also appears in software
production lines, where it would be desirable to have patterns to guide the construction and
maintenance of UIs. One possible way of defining such patterns is to use model-driven engi-
neering (MDE). In MDE, models are defined at different levels, where the bottom level is called a
metamodel. The metamodel determines the main characteristics of the models of the upper
levels, serving as a guideline. Each new level must adhere to the rules defined by the lower
levels. This way, if anything changes in a lower level, these changes are propagated to the levels
above it. The goal of this work is to define and validate a metamodel that allows the modeling
of UIs of software systems, thus allowing the definition of patterns of interface and supporting
system evolution. To build this metamodel, we use a graph structure. This choice is due to the
fact that a UI can be easily represented as a graph, where each UI component is a vertex and
edges represent dependencies between these components. Moreover, graph theory provides
support for a great number of operations and transformations that can be useful for UIs. The
metamodel was defined based on the investigation of patterns that occur in UIs. We used a
sample of information systems containing different types of UIs to obtain such patterns. To
validate the metamodel, we built the complete UI models of one new system and of four
existing real systems. This shows not only the expressive power of the metamodel, but also its
versatility, since our validation was conducted using different types of systems (a desktop
system, a web system, mobile system, and a multiplatform system). Moreover, it also
demonstrated that the proposed approach can be used not only to build new models, but also
to describe existing ones (by reverse engineering).

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Information systems are widely used in all business
areas and users interact with them using user interfaces

(UI). These UIs are the operational units of the system
where all features are made available to users. Normally,
users browse through menus to select the one that con-
tains the desired functionality. These systems can be
developed for many different platforms, such as desktop,
web, and mobile devices, and may also have different
patterns of UIs. Customer business areas, where these
systems are used, are always evolving, requiring that these
systems be rapidly and easily adapted to these changes,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

http://dx.doi.org/10.1016/j.jvlc.2015.10.026
1045-926X/& 2015 Elsevier Ltd. All rights reserved.

☆ This work was partially supported by FAPERGS and CNPq.
n Corresponding author.
E-mail addresses: paulo@lumertz.com (P.R. Lumertz),

leila@inf.ufrgs.br (L. Ribeiro), lmduarte@inf.ufrgs.br (L.M. Duarte).

Journal of Visual Languages and Computing 32 (2016) 1–34

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2015.10.026
http://dx.doi.org/10.1016/j.jvlc.2015.10.026
http://dx.doi.org/10.1016/j.jvlc.2015.10.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2015.10.026&domain=pdf
mailto:paulo@lumertz.com
mailto:leila@inf.ufrgs.br
mailto:lmduarte@inf.ufrgs.br
http://dx.doi.org/10.1016/j.jvlc.2015.10.026


without losing consistency. It is also important to mention
that computing power has grown in recent years for
desktop computers as well as for mobile devices. This
enables new forms of interaction and the tools for building
UIs should take this into account to accommodate the
possibility of new elements. Hence, the construction of UIs
requires a high level of technical knowledge [27].

Developing and maintaining these UIs is not an easy
task, and much effort has to be devoted to it. Companies
that develop information systems to automate their clients’
business have several challenges, such as: (a) maintaining
these systems technologically up-to-date; (b) keeping con-
sistency between UIs of the same system, both in appear-
ance and behaviour, during their development and evolu-
tion; (c) keeping the system consistent even after changes
in the development teams. New technology implies
rewriting large amounts of code to ensure that all the
features remain active and according to the original
requirements. The modification of technical staff is another
problem, since the documentation may be insufficient or
out-of-date. A survey conducted by Myers and Rosson [24]
concluded that the effort in the construction of UIs can
reach almost 50% of the total effort to build a system.
It has also been noticed that the design and implementation
of UIs rarely have the same level of specification and
modeling as the data and the functionalities [28], even
though the construction of UIs is recognized as one of the
most time-consuming steps of any process of software
production.

Since the 1990s, much research has been developed in
order to facilitate the creation of UIs. One example is the
research on model-based user interface development
(MBUID) [41], where several models were created with the
goal of generating the UIs [40]. Many tools have been cre-
ated for this purpose and Myers [25] introduced a classifi-
cation for these tools. Extensions of UML with elements for
modeling UIs were also proposed, creating the UMLi [5].
Although these approaches were based on simple ideas, the
construction of declarative models was not trivial.

Most model-based tools use task, application, and
presentation models to generate the executable UIs. This
makes the generation of UIs more complex because
developers have to deal with different models and this can
be more time-consuming than directly programming the
UIs. In addition, these models are constructed for each
individual UI, which makes it difficult to maintain the
consistency across all the UIs of the system.

Model Driven Engineering (MDE) [42] and reusable compo-
nents and patterns [32] have been recently proposed to aid the
development and evolution of software systems. The use of
patterns is intended to allow the reuse of software, which
would make it easier to maintain consistency [29]. Abstract
user interfaces can be used to guide the design phase and
serve as the basis for automatic code generation [20]. The use
of MDE can reduce the effort to build UIs, enabling that they
be automatically generated by model transformations. If the
UIs are automatically generated, there can be an improvement
in usability because they provide greater assurance of con-
sistency of user experiences [26]. However, the practical use of
this idea requires the definition of metamodels, which corre-
spond to the most abstract descriptions of characteristics of a

system. Based on these metamodels, it is possible to incre-
mentally define more concrete models, gradually reaching the
implementation level. Each new level of abstraction has to
maintain all the characteristics of the more abstract ones.
Thus, if the model of one level of abstraction is modified, the
changes are propagated to the more concrete models, thereby
keeping consistency.

In this work, we propose an approach to tackle the
challenges described above. We studied the UIs of 20
information systems to identify patterns. These patterns
were classified using UI standards accepted by the scien-
tific community [47,11] and served as basis for a meta-
model to build UIs. This metamodel is described as a graph
[4,6], where the components of the UIs of a system are
represented by vertices and their relationships are
described by edges. The choice for a graph structure
enables the use of existing tool support for the generation
and analysis of UI models as well as to handle their evo-
lution using graph transformations [2,8,19].

To validate the proposed metamodel we constructed
models to represent the UIs of one new and four existing
systems. These models were constructed from reusable
components (patterns) using a modeling tool [10]. The
models allow the analysis of UIs and the visualisation of
their structure, thus providing a clear idea of their sizes
and complexity. Although we currently do not support
code generation from the UI models, this is technically
possible and will be discussed in Sections 5.5 and 5.6.

This paper is organized as follows: Section 2 presents the
basic concepts of users interfaces and graphs that are neces-
sary to understand the rest of the paper. Section 3 presents
the proposed UI metamodel, and Section 4 the validation of
this metamodel. Section 5 discusses how to use the proposed
metamodel to analyse the UIs of system and support their
evolution. Section 6 describes related work in the area. Finally,
Section 7 presents the conclusions and future directions.

2. Basic concepts

For this work, basic concepts about user interfaces and
graph theory are required and are presented in this section.

2.1. User interfaces

A user interface (UI) is where a user operates an infor-
mation system. An interface should provide a “friendly”
experience, allowing the user to interact with the software
features in a natural and intuitive way. In the first infor-
mation systems, UIs were quite limited, consisting of textual
interfaces. The great development of UIs to reach its current
stage happened with the creation of graphical interfaces,
which also increased the time and resources required to
develop and execute such UIs. The first graphical UIs were
created by Xerox Corporation in Palo Alto Research Center and
the more recent are present in Windows 8 by Microsoft, OS
X by Apple, and also the UIs of mobile devices like IOS,
Android and others. All these UIs have common character-
istics that were identified in Palo Alto, such as the concepts
of windows, icons, menus, and pointers.

P.R. Lumertz et al. / Journal of Visual Languages and Computing 32 (2016) 1–342



Download English Version:

https://daneshyari.com/en/article/523408

Download Persian Version:

https://daneshyari.com/article/523408

Daneshyari.com

https://daneshyari.com/en/article/523408
https://daneshyari.com/article/523408
https://daneshyari.com

