
Using rule overriding to improve reusability and understandability
of Dynamic Meta Modeling specifications$

Christian Soltenborn �, Gregor Engels

University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany

a r t i c l e i n f o

Article history:

Received 14 May 2010

Received in revised form

25 October 2010

Accepted 8 December 2010
Available online 12 January 2011

Keywords:

Semantics

Metamodel

Dynamic Meta Modeling

Graph transformation

Inheritance

a b s t r a c t

Dynamic Meta Modeling (DMM) is a visual semantics specification technique targeted

at languages based on a metamodel. A DMM specification consists of a runtime

metamodel and operational rules which describe how instances of the runtime meta-

model change over time. A known deficiency of the DMM approach is that it does not

support the refinement of a DMM specification, e.g., in the case of defining the

semantics for a refined and extended domain-specific language (DSL). Up to now,

DMM specifications could only be reused by adding or removing DMM rules.

In this paper, we enhance DMM such that DMM rules can override other DMM rules,

similar to a method being overridden in a subclass, and we show how rule overriding

can be realized with the graph transformation tool GROOVE. We argue that rule

overriding does not only have positive impact on reusability, but also improves the

intuitive understandability of DMM semantics specifications.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In today’s software engineering world, typically a lot of
people with different backgrounds are involved in a soft-
ware project. This is due to the increased complexity of
software, but also because software systems are used in
basically every area; as a consequence, software engineers
have to work together with domain experts from different
fields.

One way to support communication between those
differently skilled groups of people is to use visual
modeling languages. This approach works best if the
language that is used supports concepts of the actual
domain; so-called Domain-Specific Languages (DSLs) might
even enable the domain experts to do large parts of the

modeling themselves (in contrast to a general-purpose
language like the Unified Modeling Language (UML) [1]).

One requirement for effectively using DSLs is a precise
definition of the language’s semantics. This is often the
case for the static semantics of a language (the UML is no
exception here): Valid sentences of a language are e.g.,
described by means of metamodels, i.e., class diagrams
describing the language’s concepts as well as their rela-
tion to each other. Additional, context-sensitive
constraints—which cannot be expressed with class dia-
gram constructs—are added, e.g., using a language like
the Object Constraint Language (OCL) [2].

For the definition of the dynamic semantics of a
language, the situation is not as good. Often, natural
language is used to describe how models of a certain
language behave. For instance, the UML specification
states that the semantics of Activities is based on token
flow, but this information is only contained in the text
accompanying the definition of the static semantics.

Such an informal description of the language’s beha-
vior almost always leaves room for different interpreta-
tions and is therefore in conflict with the requirement

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

1045-926X/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2010.12.005

$ This paper has been recommended for acceptance by Mark Minas.
� Corresponding author. Tel.:+495251603959;

fax:+495251603431.

E-mail addresses: christian@uni-paderborn.de (C. Soltenborn),

engels@uni-paderborn.de (G. Engels).

Journal of Visual Languages and Computing 22 (2011) 233–250

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2010.12.005
mailto:christian@uni-paderborn.de
mailto:engels@uni-paderborn.de
dx.doi.org/10.1016/j.jvlc.2010.12.005


that the language’s meaning needs to be defined precisely.
Additionally, other requirements which are often put on
DSLs are seriously affected: First, to effectively work with
a DSL, a sophisticated tool support is needed, and second,
the quality of complex models cannot be checked manu-
ally; therefore, the language should be analyzable.

These requirements can only be fulfilled by a language
whose syntax and semantics are specified formally.
Unfortunately, formal specifications often lead to another
problem: They are difficult to understand for language
users who are not familiar with the underlying formalism.
This has two severe drawbacks: First, the language engi-
neer’s job of creating the semantics specification is more
difficult, and second, end users of the language cannot
refer to the semantics specification as a reference when,
e.g., discussing the semantics of a particular element.

Consequently, a semantics specification technique is
needed which is not only formal, but is also easily under-
standable at least for the target language users (users
who are at least familiar with the language’s metamodel).
This is where Dynamic Meta Modeling (DMM) [3,4] comes
into play.

DMM specifications are easily understandable for a
number of reasons: Firstly, as we will see later, a DMM
rule is an (annotated) object diagram instantiating the
runtime metamodel; this visual and familiar appearance
has proved to be easy to comprehend [5]. Secondly, DMM
supports a number of object-oriented concepts, which are
expected to be well-known by the target language users.

DSLs are often developed incrementally, i.e., an exist-
ing DSL is modified to suit the needs of another but
related domain. Therefore, if a DSL has been equipped
with a formal specification of syntax and semantics, it is
desirable to be able to reuse that specification for the
modified DSL.

In its current state, existing DMM specifications can
be reused as a base for similar languages, but only
with strong restrictions: DMM rules can be added or
removed from a DMM specification, but rules cannot
refine other rules (similar to a class refining methods of
its superclasses).

It turned out that this severely hampers reusability of
DMM specifications. As a consequence, we decided to
introduce a notion of rule overriding into the DMM
language. Within this paper, we introduce this concept
of rule overriding.

In the next section, we give a brief overview on related
work and point out the differences between the existing
approaches and ours. Section 3 provides an introduction
to DMM in its current state, illustrating the different parts
of a DMM specification. Since we expect UML activities to
be familiar to the readers of our paper, we use a simplified
version of that language as a running example. Section 4
then introduces and discusses our notion of rule over-
riding. The last section concludes and gives an outlook on
future work.

This paper is an enhanced version of [6]. In particular,
a detailed description of the implementation of rule
overriding using the GROOVE toolset [7] has been added
to Section 4, more elaborated examples have been pro-
vided, and the related work has been enhanced.

2. Related work

This section will discuss research which is related to
ours. There are several approaches to define the semantics
of visual modeling languages by means of (typed) graph
transformations (see e.g., [8,9]). We first do a brief
comparison to generic frameworks suited for semantics
specification. Next, we will discuss work which provides
some support for reusability, such as modularization,
prioritization, or support for inheritance. Finally, we will
compare DMM to common rule-based model transforma-
tion approaches.

One approach to specifying behavioral semantics of
visual languages has been suggested by Chen et al. [10]:
They define the semantics of a language by anchoring it to
another language (which they call semantic unit) whose
semantics is well-defined. The advantage is that the
language engineer does not have to come up with an
own semantics for his language – instead, he only has to
map his language constructs to the ones of the semantic
unit. However, this only works if the two languages are
closely related to each other; consequently, the authors
claim that an appropriate set of semantic units covering
the needs of the most common behavioral languages is
yet to be identified. In contrast, DMM leaves the burden of
specifying the operational semantics to the language
engineer, but provides more flexibility, since there are
no restrictions on the semantic domain (i.e., the runtime
metamodel).

Bottoni et al. [11,12] define action patterns and their
generalization generative patterns for the sake of specify-
ing ‘‘semantic building blocks’’, for instance in the context
of token flow. A target language’s metamodel is then
mapped to a metamodel of the semantic domain, and the
defined patterns are instantiated in the context of ele-
ments of the semantic domain; the result are rules
describing the elements’ semantics (i.e., rules which make
elements of the target language flow like tokens). Again,
the approach only works if appropriate patterns are
available which reflect the target language’s intended
semantics.

We now turn to approaches which directly or indir-
ectly support reusability. The first area of interest we
discuss is notions of inheritance. In de Lara et al. [13],
show how to integrate attributed graph transformations
with node type inheritance, therefore allowing to formu-
late abstract graph transformation rules (i.e., rules which
contain abstract nodes). The resulting specifications tend
to be more compact, since a rule containing abstract
nodes might replace several rules which would otherwise
have to be defined for each of the concrete subtypes. The
resulting formalism does not provide support for the
refinement of rules (and is therefore comparable with
the expressiveness of the current state of DMM).

Ferreira et al. [14,15] develop a notion of typed graph
transformations which supports several object-oriented
features, including inheritance and polymorphism. They
focus on delivering a framework which is as close to
object-oriented systems described by e.g., Java code as
possible, whereas the models targeted by DMM are
expected to have a less complex semantics, since they

C. Soltenborn, G. Engels / Journal of Visual Languages and Computing 22 (2011) 233–250234



Download English Version:

https://daneshyari.com/en/article/523572

Download Persian Version:

https://daneshyari.com/article/523572

Daneshyari.com

https://daneshyari.com/en/article/523572
https://daneshyari.com/article/523572
https://daneshyari.com

