
 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

17 (2006) 508–527

AutoGen: Easing model management through two
levels of abstraction$

Guanglei Songa,�, Jun Kongb, Kang Zhanga

aDepartment of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688, USA
bNorth Dakota State University, USA

Abstract

Due to its extensive potential applications, model management has attracted many research

interests and gained great progress. To provide easy-to-use interfaces, we have proposed a graph

transformation-based model management approach that provides intuitive interfaces for manipula-

tion of graphical data models. The approach consists of two levels of graphical operators: low-level

customizable operators and high-level generic operators, both of which consist of a set of graph

transformation rules. Users need to program or tune the low-level operators for desirable results. To

further improve the ease-of-use of the graphical model management, automatic generation of low

level of operators is highly desirable. The paper formalizes specifications of low- and high-level

operators and proposes a generator to automatically transform high-level operators into low-level

operators upon specific input data models. Based on graph transformation theoretical foundation,

we design an algorithm for the generator to automatically produce low-level operators from input

data models and mappings according to a high-level operator. The generator, called AutoGen,

therefore eliminates many tedious specifications and thus eases the use of the graphical model

management system.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Model management; Graph transformation; Graph grammar; Visual programming; Schema

interoperation

ARTICLE IN PRESS

www.elsevier.com/locate/jvlc

1045-926X/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2006.10.004

$The work is partially supported by the National Science Foundation under Grant no. IIS-0218738.
�Corresponding author.

E-mail addresses: gxs017800@utdallas.edu (G. Song), jun.kong@ndsu.edu (J. Kong), kzhang@utdallas.edu

(K. Zhang).

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2006.10.004
mailto:kzhang@utdallas.edu
mailto:kzhang@utdallas.edu

1. Introduction

With the advance of Internet applications, interoperation among different formats is
becoming critically important. Many approaches have been intensely researched to provide
systematic solutions for manipulating heterogeneous data sources, such as peer-to-peer
data management [1]. Manipulating enormous heterogeneous schemas, however, has been
relatively a forgotten research area. These heterogeneous schemas, such as XML Schemas
[2], RELAX [3], SOX [4], ER models, SQL schemas and so on, are used to define data
sources, called meta-data or data models. Traditional approaches to manipulating these
data models are manually specified or designed case by case for specific domains, i.e.
object-at-a-time. Information engineers have to put much effort to program specifically for
the data model applications concerning data migration, data integration and translation.
Such processes are time-consuming and error-prone, and eliminate the possibility of reuse.

To reduce the programming effort, Model Management [5] is introduced to reconcile the
painful process of manipulating heterogeneous data models. According to the vision paper
[5], model-related applications can be composed by a sequence of atomic operations on
data models, such as Merge, Match and so on. These atomic operations are defined as
generic operators such that they treat data models as high-level data structures and
therefore can be re-used in various domains. A model management system provides a set of
high-level programming interfaces for applications to implement the atomic operations to
save programming effort. Model management is the first effort to organize and generalize
these operators to a systematic architecture. Conceptually, these model management
operators have been applied to solve many classic meta-data problems successfully [6] and
the first textural prototype system has been developed [7].

Given the operators provided by a model management system, users need to write a
program to combine a series of operators to fulfill a specific task. Each execution process
of a specific operator is transparent to the user and not customizable. Many usage
scenarios, such as the motivating example of Melnik et al. [8], however have demonstrated
that user interventions are constantly required and customizability is highly desirable for
model management operators. Existing operators, however, are defined by text and
transparent to users, and their implementations are hard-coded in the system. Little work
has been done to improve the customizability and user interfaces of model management
operators.

To improve the expressiveness and customizability of model management operators, we
recently proposed a graphical model management framework [9] based on a graph
grammar formalism, i.e. the Reserved Graph Grammar [10,11]. We also presented
graphical definitions and representations of data models and mappings. Many data
models, including ER models and UML models, are represented by graphs and others,
including XML Schemas and SQL schemas, can easily be translated into graphs [7]. With
intuitive representations for designers to communicate with each other, graphs are natural
representations for data models. Graph transformation, as the theoretical foundation
of visual programming languages, is capable of formally defining how graphs should be
built and how they evolve [9]. The framework defines operations on data models through
a set of graph transformation rules. These transformation rules are declarative and
customizable.

The framework provides two levels of graphical operators, i.e. low level for end-to users
or adjust and high-level operators for domain-experts to program. The two tier architecture

ARTICLE IN PRESS
G. Song et al. / Journal of Visual Languages and Computing 17 (2006) 508–527 509

Download English Version:

https://daneshyari.com/en/article/523627

Download Persian Version:

https://daneshyari.com/article/523627

Daneshyari.com

https://daneshyari.com/en/article/523627
https://daneshyari.com/article/523627
https://daneshyari.com

