
A methodology to specify three-dimensional interaction
using Petri Nets

Rafael Rieder a,�, Alberto Barbosa Raposo b,1, Márcio Sarroglia Pinho a,2

a Pontifı́cia Universidade Católica do Rio Grande do Sul – PUCRS, Faculdade de Informática – FACIN, Avenida Ipiranga, 6681, Prédio 32, Sala 607,

CEP 90619-900 Porto Alegre, RS, Brazil
b Pontifı́cia Universidade Católica do Rio de Janeiro, PUC-Rio Grupo de Tecnologia em Computac- ~ao Gráfica, TECGRAF Rua Marquês de S ~ao Vicente, 225,

Prédio Belisário Velloso, CEP 22453-900 Rio de Janeiro, RJ, Brazil

a r t i c l e i n f o

Article history:

Received 5 November 2007

Received in revised form

28 October 2009

Accepted 14 January 2010

Keywords:

Interaction tasks

Petri Nets

Specification

Code generation

a b s t r a c t

This work presents a methodology to formally model and to build three-dimensional

interaction tasks in virtual environments using three different tools: Petri Nets, the

Interaction Technique Decomposition taxonomy, and Object-Oriented techniques. User

operations in the virtual environment are represented as Petri Net nodes; these nodes,

when linked, represent the interaction process stages. In our methodology, places

represent all the states an application can reach, transitions define the conditions to

start an action, and tokens embody the data manipulated by the application. As a result

of this modeling process we automatically generate the core of the application’s source

code. We also use a Petri Net execution library to run the application code. In order to

facilitate the application modeling, we have adapted Dia, a well-known graphical

diagram editor, to support Petri Nets creation and code generation. The integration of

these approaches results in a modular application, based on Petri Nets formalism that

allows for the specification of an interaction task and for the reuse of developed blocks

in new virtual environment projects.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The development process of Virtual Reality (VR)
applications still uses ad-hoc modeling and implementa-
tion techniques, with very little standardization and
almost no formalism. This can be noticed particularly in
efforts devoted to scientific applications, leading, in most
cases, to code rewriting and hindering application
analysis before its implementation.

In order to better understand a VR application,
especially its possibly intricate interaction flow, it is very
helpful to use some kind of formal method like Petri Nets

(PN), the Unified Modeling Language (UML), or Finite
State Machines (FSM), which can describe the system’s
function and components. These methods provide not
only a better understanding but also a preliminary
evaluation of each phase of the system’s operation.
Moreover, a model-based description facilitates the auto-
matic generation of the core application code from
graphical representations. The model-based code genera-
tion approach already has produced interesting results in
other domains, such as the development of user interfaces
for mobile computing [17,35], and the development of
web applications [5,21].

Besides formal specification tools, some researchers
have sought to develop taxonomies to document and
specify virtual environments (VEs) at an abstraction level
closer to the user’s view instead of the programmer’s
concept of the application. VEs use nontraditional devices
and techniques for three-dimensional interactions that
need to be carefully planned, since different physical cues

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

ARTICLE IN PRESS

1045-926X/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2010.01.002

� Corresponding author. Tel.: +55 51 3320 3611;

fax: +55 51 3320 3621.

E-mail addresses: rafael.rieder@pucrs.br (R. Rieder),

abraposo@tecgraf.puc-rio.br (A.B. Raposo), pinho@pucrs.br (M.S. Pinho).
1 Tel.: +55 21 2512 5984; fax: +55 21 3527 1848.
2 Tel.: +55 51 3320 3611; fax: +55 51 3320 3621.

Journal of Visual Languages and Computing 21 (2010) 136–156

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2010.01.002
mailto:rafael.rieder@pucrs.br
mailto:abraposo@tecgraf.puc-rio.br
mailto:pinho@pucrs.br


are mapped during a computer simulation to allow the
user’s tasks to be performed directly in a three-dimen-
sional spatial context. Some taxonomies seek, for exam-
ple, to identify the interaction process phases [6], to
classify interaction techniques [7,18,25], and to organize
the system’s control [10]. These approaches split the
systems into smaller parts, identifying behavior patterns
and allowing to encapsulate them into classes that are
capable of executing relevant functionalities. They also
allow reusing these classes in other projects and combin-
ing them to build a new interaction technique, for
example.

The use of both formalisms and taxonomies aims to
better define the interaction processes, reducing the time
spent for the design and implementation of VEs. There-
fore, an integration of both approaches can join the best of
each: system specification according to the user’s level of
expertise, evaluation in the early stages of the develop-
ment process, and detailed information on each phase of
the software development process.

This paper describes a methodology that supports the
design and implementation of software modules, which
represent the interaction process phases. Our methodol-
ogy integrates three modeling approaches: PN formalism
[19], the interaction technique decomposition taxonomy
created by Bowman and Hodges [6] and object-oriented
programming concepts. The combination of these ele-
ments allows for the description of interaction tasks, the
sequence of interaction processes being controlled by PNs
with the codes generated automatically.

The PNs are used to graphically and formally represent
the VE behavior patterns, based upon the phases of the
interaction process according to Bowman’s taxonomy. The
adoption of these approaches provides a model that can
be easily coded using a set of C++ classes. A PN simulator is
used to control the program’s execution flow.

The choice of PNs to specify tasks in VEs emerges when
we start using Bowman’s methodology because the
interaction tasks can be easily understood as transitions,
while the states reached by the application can be under-
stood as places in the PN. With this approach, the definition
of independent modules to represent the system’s func-
tionalities is straightforward. The logical separation into
modules is important, for example, to develop interaction
technique frameworks, or to facilitate an automatic code
generation from a tested and validated model.

By integrating a taxonomy for interaction techniques,
the formalism of PN and automatic code generation, the
present work addresses the entire development cycle of a
three-dimensional interaction. This cycle begins at the
design stage, based on Bowman’s interaction taxonomy,
then moves to validation and debugging using PN
simulation, and ends up with automatic code generation.
This approach is different from existing works because the
design process is focused on the user’s view and on task
decomposition, which allows analyzing the system in
different levels of detail, making the communication
between development teams and end-users more effec-
tive during the entire project. Existing approaches are
specialized in specific parts of the cycle, as will be
discussed in the section about related work.

This text is organized as follows: first we present a
literature review in Section 2. Section 3 describes the
developed methodology. In Section 4 we present a case
study applying the methodology, and we show the neces-
sary steps from application modeling to code generation
for a VE. This section also discusses the possibility of
hierarchical modeling using our methodology. In Section
5, we describe two case studies that illustrate the use of
our approach in realistic settings, such as cooperative
manipulation and innovative three-dimensional interac-
tion applications. Section 6 presents a brief discussion
about the use of the developed methodology, whereas
Section 7 describes the goals we want to achieve with
future work. Section 8 concludes the paper highlighting
the potential of our approach.

2. Related work

Smith and Duke [28] point out that the lack of formal
descriptions during the development process of virtual
environments inhibits the identification of similarities
among different interaction techniques, leading to the
‘‘reinvention’’ of existing techniques. Furthermore, ac-
cording to Navarre et al. [20], informal descriptions are
prone to ambiguities during the implementation process.

Different mechanisms have been proposed by the VR
community to describe and implement interaction tech-
niques, seeking to understand the dynamic behavior
patterns of the applications and allowing the standardiza-
tion of important functions.

This section presents an overview of the methodolo-
gies used to specify and implement the interaction
process in VEs. Techniques and frameworks used to define
the base of this work are briefly mentioned, focusing on
the goals, advantages and disadvantages of each one of
them.

2.1. Approaches for interaction technique specification

Interaction technique specification is an important
task from the perspective of both users and designers.
Users require interaction techniques that allow them to
complete interaction tasks in a particular application, and
designers have to build systems that make the required
interactions possible [27]. The existing approaches for
interaction technique specification that are more closely
related to this work are presented in the following
paragraphs.

HyNet [31] is a specification methodology for interaction
techniques that integrates three modeling approaches. High-
level PNs represent the formal base for the specification,
defining the application’s semantics and allowing a graphical
representation of the application’s events (the discrete
part of the application). Differential Algebraic Equations
handle the continuous behavior pattern of the application,
and Object-Oriented Concepts help enhance the expres-
siveness of the methodology, generating concise and
compact models.

Based on HyNet, the Flownet methodology [32] was
developed to describe dynamic behavior patterns in VEs.

ARTICLE IN PRESS

R. Rieder et al. / Journal of Visual Languages and Computing 21 (2010) 136–156 137



Download English Version:

https://daneshyari.com/en/article/523633

Download Persian Version:

https://daneshyari.com/article/523633

Daneshyari.com

https://daneshyari.com/en/article/523633
https://daneshyari.com/article/523633
https://daneshyari.com

