Journal of Visual Languages and Computing 21 (2010) 157-170

journal homepage: www.elsevier.com/locate/jvic

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

Concept and pragmatics of an intuitive visualization-oriented

metamodeling tool

Dirk Draheim ”*, Melanie Himsl 2, Daniel Jabornig?, Josef Kiing ¢, Werner Leithner?,

Peter Regner ?, Thomas Wiesinger ?

2 FAW-Institute, Johannes Kepler University, Linz, Austria
b Software Engineering Group, University of Mannheim, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 16 December 2007
Received in revised form

3 March 2010

Accepted 9 March 2010

Keywords:

Visual modeling

Visual modeling languages
Business process modeling
CASE tools

Model-driven architecture

In this article we present a metamodeling tool that is strictly oriented towards the
needs of the working domain expert. The working domain expert looks for intuitive
metamodeling features. In particular, these features include rich capabilities for
specifying the visual appearance of models. Our research has identified an important
design rationale for metamodeling tools that we call visual reification, which is the
notion that metamodels are visualized the same way as their instances. Our tool
supports both standard and innovative metamodeling features oriented towards the
principle of visual reification. In this paper we present an unbiased discussion of the
pragmatics of metamodeling tools against the background of this design rationale.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In successful projects today, modeling activities are
seen in business reengineering, logistics, supply chain
management, industrial manufacturing and so on. Models
foster communication among stakeholders, because they
enforce a certain standardization of the respective domain
languages. Therefore, models speed up fulfillment of
requirements and then serve as long-term documentation
of system analysis efforts. From this perspective, model-
ing is here to stay. Models add value even when they are
not intended as blueprints for software development
projects. For example, in major enterprises today huge
projects are being directed toward redocumentation of

* Corresponding author.
E-mail addresses: draheim@acm.org (D. Draheim),
mhimsl@faw.uni-linz.ac.at (M. Himsl), djabornig@faw.uni-linz.ac.at
(D. Jabornig), jkueng@faw.uni-linz.ac.at (J. Kiing),
wleithner@faw.uni-linz.ac.at (W. Leithner), pregner@faw.uni-linz.ac.at
(P. Regner), twiesinger@faw.uni-linz.ac.at (T. Wiesinger).

1045-926X/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.,jv1c.2010.03.002

the business process. Research in model-driven engineer-
ing is important; however, we have a focus on modeling
that is different from model-driven engineering. For
example, we focus primarily on the working domain
[15] expert. It is often necessary to adapt the modeling
method and, in particular, to adapt the modeling language
used to the current needs of the domain. It might also be
necessary to introduce new modeling elements, to
eliminate an existing model element, to add attributes
to an existing modeling element, to detail the semantics
or to change the appearance of a model element.

2. Motivation and requirements for a visualization-
oriented meta- and instance-modeling tool

Unlike most research done in domain-specific model-
ing, metamodeling and model transformation, our study
focuses on the area of business or corporate modeling. In
numerous projects, from business process management to
enterprise-wide IT architectures, modeling is an essential
prerequisite for success. Moreover, it is not possible to

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2010.03.002
mailto:draheim@acm.org
mailto:draheim@acm.org
mailto:mhimsl@faw.uni-linz.ac.at
mailto:mhimsl@faw.uni-linz.ac.at
mailto:djabornig@faw.uni-linz.ac.at
mailto:djabornig@faw.uni-linz.ac.at
mailto:jkueng@faw.uni-linz.ac.at
mailto:wleithner@faw.uni-linz.ac.at
mailto:wleithner@faw.uni-linz.ac.at
mailto:pregner@faw.uni-linz.ac.at

158 D. Draheim et al. / Journal of Visual Languages and Computing 21 (2010) 157-170

achieve sustainable improvements without an appropri-
ate abstraction of the real corporate structures and
processes; thus, modeling should be used. On the other
hand, modeling must not become an end in itself; rather,
it should focus strongly on the elements that need to be
analyzed. Otherwise, it will be nearly impossible to
maintain the results, considering that corporate struc-
tures and processes are frequently subject to change.

As a consequence of organizational changes, the model
repository and even modeling methods may have to be
adapted to keep them suitable. This adaptation process is
more than a tool function; it is an organizational process
that has to be implemented. We will discuss this
organizational integration [1] in greater depth later in
this paper (see also [1]).

An important issue with modeling is that most popular
corporate modeling tools do not allow the creation or
adaptation of metamodels. This issue is quite interesting if
we consider how much effort has been made to “invent”
metamodeling methods, and if we look at the list of tools
supporting these metamodeling methods. Especially well-
established (Meta)-CASE Tools [11,7,5] offer metamodel-
ing features, and the most recent developments, such
as Eclipse GMF [25] and Microsoft DSL [26], offer
outstanding possibilities for creating domain-specific
languages.

To provide metamodeling features for the business
domain and directly to end-users, we have determined
that the primary principle is intuitivity. This priorization
may be the main reason that user-enabled metamodeling
is currently not found in business modeling tools.
Methods such as OMG’s MOF [27] or proprietary methods
implemented by, e.g., (Meta)-CASE tools [28], are rarely
accepted by users in the business domain. Nevertheless,
metamodeling features would add substantial value if
applied in a user-friendly, intuitive style.

In this paper, we introduce a metamodeling methodol-
ogy that is strongly focused on visual representation,
supporting what we call the visual reification principle.
With visual reification, metamodeling becomes intuitive
WYSIWYG modeling rather than an abstract visualization-
independent task.

3. Concept of a visualization-oriented meta- and
instance-modeling tool

The concept described below is the basis for visual
reification. To demonstrate the basics, we introduce
modeling elements defined in a generic meta-metamodel.
These elements are used to create structurally and
visually valid metamodels. If the visual reification princi-
ple is applied completely, a metamodel can be seen
simultaneously as its minimal valid instance. However,
we show that it may not always be adequate to support
visual reification to achieve the full power of metamodel-
ing. We present an in-depth discussion about this point in
Section 5 below.

Nevertheless, a metamodel is still “only” a modeling-
language definition that acts as a schema for instance
models. To respect this conceptual separation, we divide

the following definition of metamodel into two distinct
layers: the meta layer and the instance layer.

3.1. MetaObject

The MetaObject represents an object type on the meta
layer. For the definition of attributes, various attribute
types are available, such as text, choices, lists, file-system
references, URL references and references to other model
elements. It is also possible to order the attributes
hierarchically. For visualization of the MetaObject, various
graphical notations can be created. Attributes can be
visualized (e.g., the name should be displayed) relative to
the object’s bounds or embedded in the object’s figure.
MetaObjects can also be defined as “abstract.” In this case,
an instantiation of the abstract MetaObject is not possible.
Abstract MetaObjects break the visual reification princi-
ple. However, abstract MetaObjects are optional and
only available to support the definition of inheritance
hierarchies.

Every MetaObject can act as a container for child
MetaObjects (see Fig. 1). Several container properties exist
to define the container layout, create visual sub-
containers and restrict the number of allowed children.

3.2. MetaConnection

The MetaConnection represents a connection type on
the meta layer. A MetaConnection is an edge that visually
connects exactly two MetaObjects (see Fig. 2). However,
under the references copy concept it is possible to state
that a connection can connect several different elements.
We will discuss reference copies in greater depth later in
this paper (see Section 3.4).

Like objects, connections can have different visualiza-
tions and attributes. Additionally, it is possible to decide
whether the connection is directed and cyclic, as well as
to specify its source and target multiplicities. In summary,
a MetaConnection can be defined as follows:

e A connection visualizes a relation between model
objects.

e A connection is represented as an edge with identifier
and direction.

I
MetaObject !
MetaObiject that represents object types in !
metamodels I

I

&

[A] Abstract MetaObject !
Abstract MetaObject that can be used to define:
inheritance hierarchies I

I
Container MetaObject !
=1| MetaObject that acts as a container for other 1

| 02 ” O3 || MetaObjects X
I

Fig. 1. Three types of MetaObjects.

Download English Version:

https://daneshyari.com/en/article/523634

Download Persian Version:

https://daneshyari.com/article/523634

Daneshyari.com

https://daneshyari.com/en/article/523634
https://daneshyari.com/article/523634
https://daneshyari.com/

