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We will revisit the categorical notion of cospan decompositions of graphs and compare it
to the well-known notions of path decomposition and tree decomposition from graph
theory. More specifically, we will define several types of cospan decompositions with
appropriate width measures and show that these width measures coincide with
pathwidth and treewidth. Such graph decompositions of small width are used to
efficiently decide graph properties, for instance via graph automata. Hence we will give
an application by defining graph-accepting tree automata, thus integrating previous

work by Courcelle into the setting of cospan decompositions. Furthermore we will show
that regardless of whether we consider path or tree decompositions, we arrive at the
same notion of recognizability.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In graph rewriting the notion of cospan plays a major
role: cospans can be seen as graphs equipped with an
inner and an outer interface and they can be used as
(atomic) building blocks for constructing or decomposing
larger graphs. Furthermore cospans are a means to cast
graph rewriting into the setting of reactive systems [1,2].

In graph theory there are different notions for decom-
posing graphs: path and tree decompositions [3], which at
first glance seem to have a very different flavor than
cospan decompositions. These notions lead to width
measures such as pathwidth and treewidth and they are
used to specify how similar a graph is to a path or a tree.

“ Supported by the prc-project GaReV.

“* This paper has been recommended for acceptance by Shi Kho
Chang

* Corresponding author. Tel.: +49 203 3793397; fax: +49 203 3793557.

E-mail addresses: christoph.blume@uni-due.de (C. Blume),

sander.bruggink@uni-due.de (H.J.S. Bruggink),
martin.friedrich@stud.uni-due.de (M. Friedrich),
barbara_koenig@uni-due.de (B. Konig).

1045-926X/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/,jvlc.2012.10.002

Treewidth plays a major role in complexity theory: for
instance Courcelle’s theorem [4] states that every graph
property that can be specified in monadic second-order
graph logic can be checked in linear time on graphs of
bounded treewidth. Furthermore there are intuitive game
characterizations (robber and cops games) for treewidth.
In this paper we show that, when seen from the right
perspective, graph decompositions based on cospans are in
fact very similar to path and tree decompositions. In order
to be able to state this formally we classify several types of
cospan decompositions, which are sequences of cospans
(with varying additional conditions). Obtaining the decom-
posed graph amounts to taking the colimit of the resulting
diagram. We define width measures based on such decom-
positions and show that the width measures all coincide
with pathwidth. In the second part of the paper the results
are repeated for tree-like decompositions and treewidth,
where the tree-like decompositions are trees where the
edges are labeled with spans or cospans, and the decom-
posed graph is again obtained by taking the colimit.
Additionally, we define automata for such decomposi-
tions. For cospan decompositions we use automaton
functors [5], which in [6] were used to check invariants
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of graph transformation systems. Automaton functors
work by decomposing a graph into (atomic) cospans,
and then running a finite automaton on the sequence.
This approach is an extension of the work by Courcelle
and others on recognizable graph languages [4], which are
in turn equivalent to the notion of inductive graph
properties [7].

For tree-like decompositions, we define consistent tree
automata. These automata input so-called term decom-
positions, which are tree-like decompositions in the form
of first-order terms. They are usual tree automata [8,9]
with the additional requirement that their behavior and
acceptance are the same for different term decomposi-
tions of the same graph. A main result of the paper is that
automaton functors and consistent tree automata accept
the same language class, namely the class of recognizable
graph languages.

As far as we know there have been only few investiga-
tions into the notions of pathwidth and treewidth in the
context of graph rewriting. We are mainly aware of the
relation between context-free (or hyperedge replace-
ment) grammars and bounded treewidth that is discussed
in [10-12]. It is shown that the language generated by a
context-free grammar has always bounded treewidth,
that is, there is an upper bound for the treewidth of every
graph in the language. This also implies the well-known
result that the language of all graphs is not context-free.

Interest in the relation between tree decompositions
and graph rewriting seems to have declined, but in our
opinion this area has a lot of potential for an increased
interaction of graph transformation and graph theory, since
graph decompositions and width measures are still of
central interest to the graph theory community. As far as
we are aware, the relation between cospan decompositions
and tree and path decompositions has never been formally
investigated and while the main ideas are fairly straight-
forward it turns out that there are some subtle issues to
consider when translating one representation into the
other. For instance, we found that there is more than one
possible translation and more than one width measure.

The paper is organized as follows: In Section 2 we will
introduce the preliminaries such as cospans, graph
decompositions and tree automata. Then in Section 3 we
will have a closer look at cospans, identifying also atomic
cospans as building blocks. Then in Section 4 we will
compare cospan decompositions with path decomposi-
tions and in Section 5 we will define graph automata as
automaton functors for the category of cospans of graphs.
In Section 6 we compare tree-like cospan decompositions
with tree decompositions, and in Sections 7 and 8 we
define term decompositions and tree automata operating
on the them. Finally we will conclude with Section 9.

This paper is based on [13]. Sections 3, 4 and 6, in
which the correspondence of the various types of decom-
position is discussed, correspond to that paper; Sections 5,
7 and 8, which address (tree) automata, are new.

2. Preliminaries

By N, we denote the set {1,...,k}. The set of finite
sequences over a set A, including the empty sequence ¢, is

denoted by A*. Composition of two sequences d and E) is
denoted by juxtaposition, that is by @ b .

If f: A—B is a function from A to B, we will implicitly
extend it to subsets and sequences; for A’ <A and @ =

ar...ay € A*: fA) = {f(®)|a € A} and f(d)=f(a1)...f(an).
2.1. Categories and cospans

We presuppose a basic knowledge of category theory.
For an arrow f from A to B we write f : A—»B and define
dom(f) =A and cod(f) =B. For arrows f :A—»Band g: B—
C, the composition of f and g is denoted (f;g) : A—C. The
category Rel has sets as objects and relations as arrows.
Its subcategory Set has only the functional relations
(functions) as arrows.

An initial object of a category C is an object 0, such that
for each object K € C there exists a unique morphism from
0 to K, which is denoted by !k : 0> K.

Let C be a category in which all pushouts exist.
A concrete cospan in C is a pair {cy,cg > of C-arrows with
the same codomain: J—c, -G «—cz—K. Two concrete cospans
are isomorphic if their middle objects are isomorphic
(such that the isomorphism commutes with the compo-
nent morphisms of the concrete cospan). A cospan is an
isomorphism class of concrete cospans. In the following
we will confuse cospans and concrete cospans, in the
sense that we represent cospans by giving a representa-
tive of the isomorphism class.

Composition of two cospans <{c,cg>,<{d,dr ) is com-
puted by taking the pushout of the arrows cz and d;.
Cospans are the arrows of so-called cospan categories.
That is, for a category C with pushouts, the category
Cospan(C) has the same objects as C. The isomorphism
class of a cospan ¢ : J-c,.—~G—c—K in C is an arrow from J
to K in Cospan(C) and will be denoted by c:J 4~ K.

Spans are the dual notion of cospans, that is, they are
(equivalence classes of) pairs of morphisms with the same
domain.

Colimits can be seen as “generalized” pushouts. Given
a collection (diagram) D of objects {A4, ...,A;} and morph-
isms between them, the colimit of D is an object B together
with morphisms g; : A;j—B such that the diagram com-
mutes, and for each object B and morphism uj: A;—B’
where the diagram commutes, it holds that there exists a
unique h : B— B such that everything commutes. We will
write Colim(D) = B in this case.

2.2. Graphs and decompositions

A hypergraph over a set of labels X (in the following
also simply called graph) is a structure G = <{V,E,att,lab>,
where V is a finite set of nodes, E is a finite set of edges,
att : E-V* maps each edge to a finite sequence of nodes
attached to it, and lab : E— X assigns a label to each edge.
The size of the graph G, denoted |G|, is defined to be the
cardinality of its node set, that is |G| =|V|. A discrete
graph is a graph without edges; the discrete graph with
node set N, is denoted by D;. We denote the empty graph
by 0 instead of Dj.

A graph morphism from a graph G = {V¢,Eg,attg,labg >
to a graph H= (Vy,Ey,atty,laby> is a pair of maps
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