
Generic and reflective graph transformations for checking and
enforcement of modeling guidelines

Elodie Legros �, Carsten Amelunxen, Felix Klar, Andy Schürr

Real-Time Systems Lab, Technische Universität Darmstadt, Germany

a r t i c l e i n f o

Keywords:

Graph transformation

Generic rules

Reflection

a b s t r a c t

In the automotive industry, the model driven development of software, today considered

as the standard paradigm, is generally based on the use of the tool MATLAB Simulink/

Stateflow. To increase the quality, the reliability, and the efficiency of the models and the

generated code, checking and elimination of detected guideline violations defined in

huge catalogs has become an essential task in the development process. It represents

such a tremendous amount of boring work that it must necessarily be automated. In the

past we have shown that graph transformation tools like Fujaba/MOFLON allow for the

specification of single modeling guidelines on a very high level of abstraction and that

guideline checking tools can be generated from these specifications easily. Unfortunately,

graph transformation languages do not offer appropriate concepts for reuse of

specification fragments—a MUST, when we deal with hundreds of guidelines. As a

consequence we present an extension of MOFLON that supports the definition of generic

rewrite rules and combines them with the reflective programming mechanisms of Java

and the model repository interface standard Java Metadata Interface (JMI).

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, model-driven development is common
practice within a wide range of automotive embedded
software development projects. In this domain, the
standard modeling language UML does not meet the
requirements of the developers and, therefore, is neglected
in favor of the MathWorks Matlab Simulink/Stateflow
(Matlab SL/SF) [14] environment which is better adapted
for specifying, designing, implementing, and checking the
functionality of new control functions. In fact, Simulink
supports a block-oriented style of modeling that combines
the dataflow programming paradigm with differential
equation solvers, whereas Stateflow adds a discrete event
and state-oriented style of modeling.

To improve the correctness and the efficiency of models
and prevent typical modeling problems, generally ac-
cepted modeling guidelines such as the MathWorks
Automotive Advisory Board catalog [13] are usually
adopted. These modeling guidelines are either manually
or automatically checked during audits using tools like the
MathWorks Model Advisor [14]. Nevertheless, the model-
ing guidelines are numerous and, for huge models, this can
add up to a few hundreds or even thousands of violations
that must be corrected manually by the modeler.

The automation of such a task would be obviously of
great advantage. Nevertheless, we are not aware of any tool
support in this direction except of our Matlab SL/SF Model
Analysis and Transformation Environment (MATE) [21].

In addition to the urgent need for such a tool, another
motivation for starting the MATE project was our
observation of the very low level of abstraction concerning
the implementation of modeling guidelines for which
imperative programming languages are generally used.
Therefore, the realization of really complex checks is

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

ARTICLE IN PRESS

1045-926X/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2009.04.005

� Corresponding author.

E-mail address: legros@es.tu-darmstadt.de (E. Legros).

Journal of Visual Languages and Computing 20 (2009) 252–268

www.sciencedirect.com/science/journal/yjvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2009.04.005
mailto:legros@es.tu-darmstadt.de


almost infeasible as well as the development of even more
complex model transformations that eliminate identified
guideline violations automatically. Our experience
showed us that graph transformations generally offer a
significantly better support for the specification and
implementation of modeling guidelines and refactorings
[3]. Though we are not completely satisfied with the
specification of some kinds of modeling guidelines with
the currently used graph transformation language story
driven modeling (SDM). For instance, numerous guide-
lines require the definition of very similar graph transfor-
mations, which is a repetitive and time-consuming task
for the developer. We are convinced that it could be
significantly improved by adopting genericity and reflec-
tion concepts from standard programming languages such
as Ada or Java. We introduced these concepts in a previous
paper [2]. This article is an extended version of the latter.
In addition to the description of the proposed features, we
now present a more formal definition of them as part of a
metamodel describing the SDM syntax. We also describe
the techniques which are used to realize these additional
graph transformation concepts. Even if the specification of
modeling guidelines was the first motivation for our work,
our proposal is not restricted to this area, but is applicable
to any domain in which visual graph transformations can
be used. Therefore, we present here an example that
applies the new concepts to a refactoring operation, which
is partially realized by graph transformations.

The rest of this paper is structured as follows. In the
next section, we present the MATE project and then in
Section 3 describe the syntax of the graph transformation
language SDM and the overall structure of the Matlab
Simulink metamodel, as well as the running example used
in the following sections. We then present in Section 4 the
Java Metadata Interface (JMI) which is used for code
generation purposes and show how the low-level concept
of the JMI interface for generic and reflective program-
ming purposes can be lifted to the higher level of
abstraction of the graph transformation language SDM.
Section 5 describes our proposed enhancements for
generic and reflective model transformations on the basis
of the running examples, whereas Section 6 provides a
description of the extended SDM syntax as metamodel.
This section also presents the mapping between the new
features and the generated JMI-compliant code, and
explains how to adapt the code generation to the generic
and reflective graph transformations. Section 7 presents
an application of our proposal for the automation of
refactoring operations followed by Section 8 which gives
an overview of related approaches. Finally, Section 9
concludes this paper with our plans for future work
concerning the design and implementation of a more
powerful graph transformation environment.

2. The MATE project

The Matlab SL/SF Model Analysis and Transformation
Environment (MATE) provides support for semi-automatic
checking and enforcement of modeling guidelines as well
as for design pattern instantiation, interactive model

refactoring and beautifying operations. MATE is a joint
project in response to the urgent need of the automotive
industry for more sophisticated tool support to assist
software developers using Matlab SL/SF with the main-
tenance and quality assurance problems of everyday life
programming. Because Matlab SL/SF is used for the
development of safety-critical embedded systems, model
audits have become necessary steps that must be
executed with rigor, but are time-consuming and thus
cost-intensive processes. A solution to reduce the effort of
reviewing is to ensure the quality of a model already
during its development. In practice, catalogs of modeling
guidelines are defined and the models are continuously
and automatically checked according to these guidelines
during the development.

Analysis as well as refactoring of Matlab SL/SF models
requires full access to the model repository of Matlab,
which is possible through an API written in m-script, a
proprietary script language. Due to the fact that both the
used language and the tool’s API evolved over many years,
learning how to program reliable model checks and
transformations using this approach costs time and
efforts. Furthermore, m-script is not very well suited for
the specification of modeling guidelines. As shown in
Amelunxen et al. [3], model checks written in m-script are
generally not very easy to read or understand. MATE
overcomes this problem by providing a layer of uniform
API adapters on top of which visual graph queries and
transformations can be developed in a more human
friendly manner and on a considerably higher level of
abstraction. The specification of these graph queries and
transformations is realized with the help of the Fujaba
graph transformation tool [17] and its metamodeling add-
on MOFLON [1]. A more detailed description of the MATE
system architecture and its functionality as well as its
integration with the MathWorks tool suite is out-of-scope
of this paper and may be found in Stürmer et al. [21].

3. Matlab metamodel and SDM

Inside MATE, guideline specifications are based on a
MOF 2.0 [18] compliant metamodel of Matlab SL/SF. This
metamodel acts as graph schema for the specification of
graph transformation rules. The technique of graph
transformations is on the one hand applied for the
detection of incorrect models as well as, on the other
hand, for the (semi)automatic repair of identified errors.
MATE uses the visual graph transformation approach of
story driven modeling [23]. In the following we give a
brief overview of this approach and its syntax followed by
some examples of guideline specifications.

3.1. The story driven modeling syntax

The central idea of story driven modeling is the
combination of common UML activity diagrams with
graph transformations. The essential graph schema is
modeled as UML/MOF class diagram. An activity diagram
is used to specify the behavior of exactly one operation of
a schema class by specifying the control flow concerning

ARTICLE IN PRESS

E. Legros et al. / Journal of Visual Languages and Computing 20 (2009) 252–268 253



Download	English	Version:

https://daneshyari.com/en/article/523670

Download	Persian	Version:

https://daneshyari.com/article/523670

Daneshyari.com

https://daneshyari.com/en/article/523670
https://daneshyari.com/article/523670
https://daneshyari.com/

