
End-user strategy programming

Christoph Neumann �, Ronald A. Metoyer, Margaret Burnett

School of Electrical Engineering and Compurer Science, Oregon State University, Corvallis, OR, USA

a r t i c l e i n f o

Article history:

Received 20 September 2006

Received in revised form

20 March 2008

Accepted 28 April 2008

Keywords:

End-user programming

Natural programming

Visual programming

Computer animation

American football

a b s t r a c t

Rule-based programming systems can be fragile because they force the user to account for

all logical alternatives. If an unconsidered case does arise during execution, program

behavior falls through the cracks into unspecified behavior. We investigate rule-based,

end-user strategy programming by introducing our Interactive Football Playbook—

a domain specific, end-user programming environment to allow American football

coaches to create animated football scenarios by associating strategy information with

virtual football players. We address the problem of rule explosion through ‘‘rule bending’’

to support a minimalist, scaffolding-driven programming environment. Additionally, we

introduce visual language representations for logical and sequential ‘‘and’’ to mitigate

end-user confusion with the semantic meaning of these ‘‘and’’ constructs.

& 2008 Published by Elsevier Ltd.

1. Introduction

Computer generated content is richer than ever before,
taking advantage of the greater capabilities of modern
hardware. Scientific visualization experts can program
complex software which generates visual, interactive
content for users from data. Professional animators can
use general purpose animation tools to create a vast array
of content from instructional visualizations to life-like
scenes for motion pictures. As the complexity of content
increases, so do the challenges for content authors; the
divide between the content creator and the content
consumer grows.

Content consumers who want to bridge the gap and
create content of their own are faced with a significant
learning curve to get up to speed with readily available,
general purpose content authoring tools. Lacking pro-
gramming skills, an individual is limited to the domain-
agnostic environment of the chosen content authoring

tool (spreadsheet, animation tool, etc.), so the individual
must learn a tool more abstract than the needed domain
without supportive features relevant to the domain. This
problem is compounded by the user’s need to create
content quickly and update it often. For example, an
animation created using an animation tool is expressed at
a low level—a set of concrete property changes over time
(e.g. x–y location, orientation, scale, etc.) for a particular
object being animated. Each of these points in time is
termed a ‘‘keyframe’’ and properties are interpolated
between keyframes in the ‘‘inbetween’’ frames. So a
change to one object in part of the animation may
result in large number of cascading changes to keyframes
for other objects to keep the animation looking physically
correct.

A simulation approach to animation allows a user to
create animated content at a more abstract level than
specifying concrete property changes over time. Rather
than specifying desired properties for specific objects at
points in time, the values of particular properties are
determined by the simulation engine. This approach is
used when there are many objects which are animated
simultaneously and may have complex interactions
between them. An example of such are particle systems
which are used to model water, fur, and smoke. An end

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

ARTICLE IN PRESS

1045-926X/$ - see front matter & 2008 Published by Elsevier Ltd.

doi:10.1016/j.jvlc.2008.04.005

� Corresponding author. Tel.: +1541758 4624.

E-mail addresses: christoph@neumannhaus.com (C. Neumann),

metoyer@eecs.oregonstate.edu (R.A. Metoyer),

burnett@eecs.oregonstate.edu (M. Burnett).

Journal of Visual Languages and Computing 20 (2009) 16– 29

www.sciencedirect.com/science/journal/yjvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2008.04.005
mailto:christoph@neumannhaus.com
mailto:metoyer@eecs.oregonstate.edu
mailto:burnett@eecs.oregonstate.edu


user could use extension mechanisms, such as macros
or plugins, to customize a keyframe-oriented, general
purpose animation environment to add domain-specific
abstractions to support simulation-oriented authoring.
However, developing macros and plugins often requires
the user to learn another programming language (likely a
scripting language) which represents information quite
differently than the content authoring environment.

The research community has turned to visual program-
ming languages to lower the barriers for end users to
create domain-specific, interactive, animated content.
Novices can use a visualization tool such as OpenDX [1]
(a visual dataflow language) to create their own inter-
active visualizations that would otherwise require a
strong background in a general purpose language such
as C and a graphics API such as OpenGL. Agentsheets [2,3]
allows end-user programmers to create domain-specific
visual abstractions and use them to create simulation
oriented, animated content. We believe rule-oriented
visual programming environments hold promise for
allowing end users to create computation-driven content
such as what is required for visualization or animation.

We explore end-user creation of rule-based, computa-
tion-driven, animated content through our Interactive
Football Playbook (IFP). The IFP is a simulation-driven,
strategy-oriented approach to allow coaches to program
animated football simulations. Fortunately, football coa-
ches rely on a fairly standard symbolic language for
specifying plays on static media such as paper or a
whiteboard. The IFP builds on this standardized symbolic
language and augments it with primitives and language
enhancements that allow the coaches to specify strategy
information for virtual players. Animations are then
rendered by executing the programmed scenario and
visualizing the parameters for the virtual players in the
scene (Fig. 1).

Our approach is novel in a number of ways. Firstly,
we contribute an approach for end-user strategy pro-
gramming. Our approach differs from prior end-user
programming work because we associate high-level,

strategy-oriented rules with a virtual agent rather than
using global, imperative rules to modify the state of the
agents. The coaches’ current use of static diagrams
involves formulating a strategy in the coach’s mind,
translating that strategy into a drawn diagram, and then
using the diagram as an aid to communicate the strategy
to the football players. Only simple parts of the overall
strategy are captured in the static diagram notation. Our
approach elevates the semantic level of the captured
information by allowing coaches to express more strategy
information in the IFP than in the static playbook
notation. For example, the coaches can use our notation
to specify distance and sequencing information whereas
in a playbook, that behavior is described using English.
This richer language allows the IFP to generate animated
simulations rather than simply representing static dia-
grams. Effectively, coaches author by using strategic
concepts to create rather than simply scripting out
animation actions. The outcome is more than a set of
fixed animations; it is a repertoire of executable scenarios
which exhibit specific strategies responding to the states
encountered in the scenarios.

Our second contribution is our novel approach to rule
bending. Like Repenning’s work [4,5], we address the issue
of rule explosion, but Repenning focuses on managing
discrete permutations of rules. We apply rule bending in a
continuous fashion.

We also contribute a notational device to express
parallel and sequential ‘‘and’’ within a visual program-
ming environment. Boolean expressions have been notor-
iously problematic for end users [6], so our device allows
the user to express sequential and parallel ‘‘and’’ without
the confusion that stems from using the overloaded
English word ‘‘and’’. Prior work focused on logical ‘‘and’’
used in conditions for selection, but not on ‘‘and’’ used
with regard to execution flow.

Finally, we contribute further evidence of the useful-
ness of the Natural Programming design process [7,8]. We
successfully used the Natural Programming design pro-
cess for creating the IFP and found the process to be

ARTICLE IN PRESS

Fig. 1. A screenshot of the Interactive Football Playbook.

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 17



Download	English	Version:

https://daneshyari.com/en/article/523674

Download	Persian	Version:

https://daneshyari.com/article/523674

Daneshyari.com

https://daneshyari.com/en/article/523674
https://daneshyari.com/article/523674
https://daneshyari.com/

