
Proposing and assessing a software visualization approach based on
polymetric views

Rita Francese a,n, Michele Risi a, Giuseppe Scanniello b, Genoveffa Tortora a

a University of Salerno, Italy
b University of Basilicata, Italy

a r t i c l e i n f o

Article history:
Received 11 July 2015
Received in revised form
27 April 2016
Accepted 6 May 2016
Available online 19 May 2016

Keywords:
Empirical evaluation
Qualitative study
Software visualization
Polymetric-views

a b s t r a c t

In this paper, we present an approach for the visualization of object-oriented software. This approach has
been implemented in MetricAttitude, a visualization tool based on static analysis that provides a mental
picture of a software implemented in Java by means of polymetric views. The approach graphically re-
presents a suite of object-oriented design metrics (e.g., Weighted Methods per Class) and “traditional”
code-size metrics (e.g., Lines Of Code). To assess the validity of our proposal, we have conducted two
users' studies with students in Computer Science and professional software developers. The used em-
pirical method is qualitative. To assess MetricAttitude and its underlying approach, we conducted
questionnaire-based surveys. Results suggest that MetricAttitude is a viable means to deal with existing
objects-oriented software and to comprehend their source code, in particular.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many activities in software engineering involve existing soft-
ware. Software maintenance, testing, quality assurance, reuse, and
integration are only a few examples of software processes that
involve existing software [1]. In software maintenance field, vi-
sualization [2,3] is extensively investigated and successfully
adopted to deal with existing software and to improve software
comprehensibility [4].

Researchers have proposed approaches/techniques and sup-
porting tools based on 2D and 3D environments [4–7]. These ap-
proaches visualize either static information, performing static
analysis (e.g., [8]), or dynamic information, relying on software
execution traces (e.g., [9]). The weakness of dynamic based ap-
proaches is that visualization strongly depends on the scenarios
chosen to execute software [10]. Whatever the information of a
software to visualize, a relevant concern is how it is presented to
the developer. It might happen that a visualization offered by a
tool is cryptic or vague, so failing to improve software compre-
hension. The choice of a proper visualization is straightforward,
when a well known and highly adopted representation is used,

e.g., the notations of the UML [11]. In other cases, a visualization is
the essence of a technique because it has to highlight relevant
information at a proper level of detail.

In this respect, empirical evaluations with developers appear to
be essential in order to assess the usefulness of a software visua-
lization approach. Nevertheless, software visualization tools are
rarely empirically assessed by means of users' studies. For ex-
ample, Wettel et al. [12] conducted a controlled experiment with
software professionals to assess the validity of CodeCity [13],
namely a 3D software visualization approach based on a city
metaphor, where classes are buildings and packages districts. This
empirical study was essentially unique in the genre. The main
reason for a lack of users' studies in software visualization is re-
lated to the high risk of their failure.

In this paper,1 we show a software visualization approach [14]
that provides a mental picture by viewing an object-oriented (OO)
software by means of polymetric views [8], i.e., lightweight soft-
ware visualizations enriched with software metrics. The approach
has been implemented in a prototype of a supporting tool, in-
tended as an Eclipse Rich Client Platform (RCP). We named this
prototype MetricAttitude [15]. It provides a large-scale under-
standing of a software system visualizing all classes together and
handles class relationships (e.g., delegations and hierarchies). Our

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

http://dx.doi.org/10.1016/j.jvlc.2016.05.001
1045-926X/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author at: Dipartimento di Informatica Università di Salerno Via
Giovanni Paolo II, 132 84084 Fisciano, SA.

E-mail addresses: francese@unisa.it (R. Francese), mrisi@unisa.it (M. Risi),
giuseppe.scanniello@unibas.it (G. Scanniello), tortora@unisa.it (G. Tortora).

1 Please read the paper on-screen or as a color-printed paper version, we make
extensive use of color pictures.

Journal of Visual Languages and Computing 34-35 (2016) 11–24

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2016.05.001
http://dx.doi.org/10.1016/j.jvlc.2016.05.001
http://dx.doi.org/10.1016/j.jvlc.2016.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2016.05.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2016.05.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2016.05.001&domain=pdf
mailto:francese@unisa.it
mailto:mrisi@unisa.it
mailto:giuseppe.scanniello@unibas.it
mailto:tortora@unisa.it
http://dx.doi.org/10.1016/j.jvlc.2016.05.001


tool also provides a fine-grained representation of individual
classes (e.g., the name of the class and its methods). Accordingly,
the developer can identify classes with specific characteristics,
such as a large number of code lines or the class position in the
inheritance tree [15]. To assess the validity of both the approach
and MetricAttitude, we have conducted an empirical investigation
with students and software professional developers [16]. This in-
vestigation was based on questionnaire-based surveys.

This paper is partially based on our previous works, in which
we proposed our approach [14] and its preliminary assessment
[16]. The main contributions of the current paper can be sum-
marized as follows:

� An improved description of our solutions. In particular, we
provide some visualization examples, also specifying steps
needed to use MetricAttitude;

� an extended and improved data analysis. For example, we here
analyze responses to all the questions in our questionnaire-
based surveys, while a subset in [16];

� the discussion of results has been improved and extended also
thank to the modification before;

� related work section has been extended by also referring to
some commercial software products.

The remainder of the paper is organized as follows. In Section
2, we present results of a review conducted on software visuali-
zation approaches and techniques. In Section 3, we describe our
approach, while we present MetricAttitude in Section 4. In Section
5, we provide details about our users' studies. In Section 6, we
outline obtained results. We conclude with final remarks and
possible future directions for our research.

2. Related work

There are a number of approaches/techniques for software vi-
sualization based on Synthetic Natural Environment (SNE) (e.g.,
[17–21]). In the first subsection, we discuss these techniques.
Software visualization based on graph representations and on
polymetric views have been also proposed [8,22,23]. We present
some of them in the second subsection. Due to the number of
available software visualization approaches, a deep and exhaustive
discussion of related work is not possible and it is also out of the
scope of the paper. Price et al. [24] proposed an extensive tax-
onomy of software visualization tools and approaches. For further
details, we redirect the interested reader to that taxonomy.

2.1. SNE based techniques

Among the SNE based techniques and approaches, the city
metaphor is one of the most known and used in software visua-
lization (e.g., [17–20]). Wettel and Lanza [13] propose such a kind
of metaphor for the comprehension of object-oriented software. In
their proposal, classes are represented as buildings and packages
as districts. The authors implement the metaphor in the CodeCity
tool. Software metrics are mapped onto the size and the type of
buildings. The same authors [12] present a controlled experiment
to assess the validity of both city metaphor and CodeCity. The
experiment was conducted with software professionals. The re-
sults indicate that the proposed solutions lead to a statistically
significant improvement in terms of task correctness. Results also
suggested that task completion time statistically decreases when
using CodeCity.

Graham et al. [25] propose a different SNE based approach. In
particular, they propose a software where each sun represents a
package and planets are classes. Orbits represent the inheritance

level of a class within its package. Such metaphor is used to ana-
lyze either static or evolving code and to show suspected risk parts
of the code.

To visualize the integrated representation of software devel-
opment processes, Martínez et al. [26] suggest a metaphor based
on landscape. This metaphor is conceived to describe a number of
aspects related to the development of a software, but it is not fo-
cussed on source-code. Therefore, the main difference with re-
spect to our proposal is that source-code is not the subject of
software visualization.

Ghandar et al. [27] also present a jigsaw puzzle metaphor. Each
component of a software is represented as a piece of a jigsaw
puzzle. The surface of a piece is used to graphically show the
complexity of software components. The metaphor does not pro-
vide a view at class granularity level.

Erra and Scanniello [7] present an approach based on a forest
metaphor to ease the comprehension of OO software. A software is
depicted as a forest of trees. Each tree is a class. Trunks, branches,
leaves, and their color indicate characteristic of classes (e.g., a
method is a branch of the tree that in turns represents a class).
CodeTrees is the name of the tool prototype that implements the
metaphor. To improve realistic aspect of trees, the authors
exploited and adapted the Weber and Penn approach [28]. Suc-
cessively, the same authors extended CodeTrees to allow the vi-
sualization of evolving software [29]. The same authors have re-
cently proposed a novel SNE based metaphor that takes ad-
vantages of concepts such as archipelagos, atolls, and palms [30].
Each package is represented as an atoll, while palms on it gra-
phically depict salient information of classes contained in the
package associated to that atoll. The entire software is represented
as a set go atolls. Authors speculated that this metaphor can be
considered simpler than that implemented in CodeTree for naive
users and more pleasant than that implemented in CodeCity. The
validity of this new metaphor is not assessed through an empirical
assessment with actual users.

A botanical tree metaphor is also proposed in [31]. The authors
suggest forests of trees for the visualization of huge hierarchical
structures and apply the proposed metaphor to the visualization of
directory structures. Directories, files, and their relations are vi-
sualized using trees. The approach is basically a natural visual
metaphor for information hierarchically structured.

Gall and Jazayeri [32] show a 3D visual representation for
analyzing software release histories. The approach is based on a
retrospective analysis technique to evaluate architectural stability,
based on the use of colors to depict changes in different releases.
Differently, Tu and Godfrey [33] propose an approach that makes
an integrated use of software metrics, visualization, and origin
analysis. Girba et al. [34] suggest an approach based on the notion
of history to analyze how changes appear in software. The authors
propose a tool for visualizing histories of evolving class hier-
archies. The main difference between these approaches and ours is
that we are able to show both large- and low- scale understanding
of software.

Several are the differences among our proposal and approaches
discussed before. The most remarkable one is that our approach
enriches lightweight visualizations (i.e., polymetric view) with
metrics information and relationships among classes. Relation-
ships are statically inferred to approximate run-time types of class
receivers. This represents another remarkable difference between
our proposal and visualization approaches introduced before. In
addition, we perform users' studies with both students and pro-
fessional software developers. These studies in the large part
qualitative even if quantitative information have been gathered
and analyzed.

R. Francese et al. / Journal of Visual Languages and Computing 34-35 (2016) 11–2412



Download English Version:

https://daneshyari.com/en/article/523703

Download Persian Version:

https://daneshyari.com/article/523703

Daneshyari.com

https://daneshyari.com/en/article/523703
https://daneshyari.com/article/523703
https://daneshyari.com

