
Model-driven rapid prototyping with programmed
graph transformations$

Anthony Anjorin 1, Karsten Saller n,2, Ingo Reimund, Sebastian Oster,
Ivan Zorcic, Andy Schürr
Real-Time Systems Lab, Technische Universität Darmstadt, Germany

a r t i c l e i n f o

Available online 30 August 2013

Keywords:
Rapid prototyping
Programmed graph transformations
Metamodelling
Software product lines
Model-driven testing

a b s t r a c t

Modern software systems are constantly increasing in complexity and supporting the
rapid prototyping of such systems has become crucial to check the feasibility of extensions
and optimizations, thereby reducing risks and, consequently, the cost of development.
As modern software systems are also expected to be reused, extended, and adapted over a
much longer lifetime than ever before, ensuring the maintainability of such systems is
equally gaining relevance.

In this paper, we present the development, optimization and maintenance of MoSo-
PoLiTe, a framework for Software Product Line (SPL) testing, as a novel case study for rapid
prototyping via metamodelling and programmed graph transformations.

The first part of the case study evaluates the use of programmed graph transforma-
tions for optimizing an existing, hand-written system (MoSo-PoLiTe) via rapid prototyping
of various strategies. In the second part, we present a complete re-engineering of the
hand-written system with programmed graph transformations and provide a critical
comparison of both implementations.

Our results and conclusions indicate that metamodelling and programmed graph
transformation are not only suitable techniques for rapid prototyping, but also lead to
more maintainable systems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modern software systems are constantly increasing in
size and complexity and it has become crucial to develop

appropriate techniques to cope with the challenge of devel-
oping such systems at a reasonable cost. Rapid prototyping
can be used to check if an extension or optimization of a
system is feasible and performs as expected. As this is
accomplished at a comparably low cost, the risk of making
wrong decisions is avoided early in the development process,
thus reducing the effective cost of software development.

As modern software systems are also expected to be
reused, extended and adapted over a much longer lifetime
than ever before, ensuring the maintainability of such
systems is equally gaining relevance.

In this paper, we present a novel case study for
metamodelling and programmed graph transformations
and show with our results that our model-driven approach
is not only suitable for rapid prototyping but also leads to a
more maintainable system.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

1045-926X/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jvlc.2013.08.001

☆ This paper has been recommended for acceptance by Shi Kho Chang.
n Corresponding author. Tel.: þ49 6151 16 3776.
E-mail addresses: anjorin@es.tu-darmstadt.de (A. Anjorin),

saller@es.tu-darmstadt.de (K. Saller), reimund@es.tu-darmstadt.
de (I. Reimund), oster@es.tu-darmstadt.de (S. Oster), zorcic@es.
tu-darmstadt.de (I. Zorcic), schuerr@es.tu-darmstadt.de (A. Schürr).

1 Supported by the ‘Excellence Initiative’ of the German Federal and
State Governments and the Graduate School of Computational Engineer-
ing at TU Darmstadt.

2 Supported by the German Research Foundation (DFG) in the
Collaborative Research Center (SFB) 1053 “Multi-Mechanism-Adaptation
for the Future Internet”.

Journal of Visual Languages and Computing 24 (2013) 441–462

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2013.08.001
http://dx.doi.org/10.1016/j.jvlc.2013.08.001
http://dx.doi.org/10.1016/j.jvlc.2013.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2013.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2013.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2013.08.001&domain=pdf
mailto:anjorin@es.tu-darmstadt.de
mailto:saller@es.tu-darmstadt.de
mailto:reimund@es.tu-darmstadt.de
mailto:reimund@es.tu-darmstadt.de
mailto:oster@es.tu-darmstadt.de
mailto:zorcic@es.tu-darmstadt.de
mailto:zorcic@es.tu-darmstadt.de
mailto:schuerr@es.tu-darmstadt.de
http://dx.doi.org/10.1016/j.jvlc.2013.08.001


For our case study, we investigate MoSo-PoLiTe (Model-
Based Software Product Line Testing) [8], a framework for
Software Product Line (SPL) testing that combines and
applies combinatorial testing and model-based testing to
SPL feature models [9].

In the MoSo-PoLiTe approach, a feature model that
describes the variability in an SPL as a tree of interrelated
features [9], is converted to a Constraint Satisfaction Prob-
lem (CSP) via a series of semantics preserving transforma-
tion rules that flatten the feature tree appropriately [10].
As the sheer number of possible product configurations is
impossible to test with classical approaches, a representa-
tive subset of product configurations is determined using a
combinatorial criterion, e.g., that the subset must cover all
valid pairwise combinations of all features.

This task equates to solving the CSP derived from the
SPL using well-known approaches such as forward check-
ing with some extensions. Details concerning how the
chosen subset of products to be tested can be mapped to
concrete test cases using a test model are discussed in [11].

As the flattening transformation that converts the
feature model to a CSP is by no means unique and can
be varied and optimized for a concrete CSP solver, rapid
prototyping techniques can be applied to test and evaluate
different optimization strategies.

An optimization strategy is, for example, to create
redundant constraints that do not change the semantics
of the CSP but lead to a reduction of the search space for
valid combinations. This basically results in a trade-off of
memory (redundant constraints and annotations in the
flattened tree) for efficiency (reducing the search space
and preventing backtracking).

Our contribution in this paper, which is an extended
version of our workshop paper [12], is to show, using a
novel case study from the domain of SPL testing, that
metamodelling and Story Driven Modelling (SDM)3 are
suitable techniques for rapid prototyping and supporting
maintainability. To this end, we investigate the following
two scenarios:

1. An existing, hand-written system (in our case the
constraint solver of MoSo-PoLiTe) is regarded as a
stable black-box and is only to be optimized. We show
that SDMs are well suited for rapid prototyping the
flattening (feature model to CSP) transformation, eval-
uate various optimization strategies to improve the
performance of the constraint solver, and present
measurement results for the MoSo-PoLiTe SPL testing
framework. This was the main focus of our workshop
paper [12].

2. A system (in our case the entire MoSo-PoLiTe frame-
work, i.e., constraint solver and flattening transforma-
tion) is to be either implemented from scratch or
completely re-engineered in a model-driven fashion
via rapid prototyping using metamodelling and SDMs.
To provide a quantitative and qualitative comparison
of the hand-written system with the re-engineered

implementation, we present measurement results for
efficiency, memory consumption and implementation
effort. Finally, to compare the maintainability of both
systems, we discuss a real-world change request that
we implemented for both systems.

The paper is structured as follows: In Section 2 we
introduce our running example and define the necessary
concepts used in the rest of the paper. Section 3 discusses
the transformation rules that flatten a feature model to a
CSP and explains how the CSP solver works. In Section 4,
various optimization strategies are investigated and we
show how these ideas can be rapid prototyped by translat-
ing them almost 1-to-1 in concise graph transformation
rules. Corresponding optimization results are presented in
Section 5.

For the second scenario, an overview of the re-
engineered implementation is provided in Section 6 with
a systematic and critical comparison of both systems with
respect to runtime efficiency, memory consumption and
implementation effort in Section 7. The change request
used to evaluate aspects related to the maintainability of
both systems is motivated in Section 8, while the corre-
sponding implementation of the change request for the
existing and re-engineered system is discussed in
Section 9. Section 10 gives an overview of related work
and Section 11 concludes the paper.

2. Software Product Line (SPL) case study

An SPL architecture provides a systematic means of
deriving different applications from a common architec-
ture family, reusing common features (units of function-
ality) in the process [1]. SPLs are increasing in relevance
and importance as various domains strive to cope with the
challenges of supporting a high degree of variability. The
SPL paradigm, already applied successfully in various
application scenarios, promises increased software quality,
reduced development and maintenance costs, and a
decreased time-to-market [2].

The systematic testing of SPLs, however, is non-trivial
as a high degree of variability implies a vast number of
possible products. Developing a feasible strategy for test-
ing SPLs, which reuse the same software components in
very different combinations and contexts, poses quite a
challenge [3], as testing every valid product individually
using classical approaches quickly becomes infeasible with
respect to time and cost, even for a moderate degree of
variability [4].

An established strategy is to determine a representative
subset of products which are tested in lieu of the complete
product line. Determining an optimal subset of products
with respect to a chosen test metric is, however, NP-hard
as it can be mapped to the minimum cardinality hitting set
problem [5]. Many approaches, thus, use suitable heuris-
tics to guide the choice [5–7].

In the rest of this section, basic SPL concepts are
introduced together with our running example.

A feature f represents a system property that is relevant
to some stakeholder [13]. Given the set of all features
F ¼ ff 1; f 2;…; f ng, a Product Configuration PCAPðFÞ is a

3 A concrete language for specifying programmed graph transfor-
mations.

A. Anjorin et al. / Journal of Visual Languages and Computing 24 (2013) 441–462442



Download	English	Version:

https://daneshyari.com/en/article/523717

Download	Persian	Version:

https://daneshyari.com/article/523717

Daneshyari.com

https://daneshyari.com/en/article/523717
https://daneshyari.com/article/523717
https://daneshyari.com/

