
Systematic evolution of model-based spreadsheet applications$

Markus Luckey a,n, Martin Erwig b, Gregor Engels a

a University of Paderborn, 33098 Paderborn, Germany
b Oregon State University, Corvallis, OR 97331-3202, USA

a r t i c l e i n f o

Article history:

Received 2 August 2010

Accepted 1 November 2011
Available online 9 June 2012

Keywords:

Model-based

Spreadsheet

Evolution

Update

Propagation

a b s t r a c t

Using spreadsheets is the preferred method to calculate, display or store anything that

fits into a table-like structure. They are often used by end users to create applications,

although they have one critical drawback—spreadsheets are very error-prone. Recent

research has developed methods to reduce this error-proneness by introducing a new

way of object-oriented modeling of spreadsheets before using them. These spreadsheet

models, termed ClassSheets, are used to generate concrete spreadsheets on the instance

level. By this approach sources of errors are reduced and spreadsheet applications

become easier to understand.

As usual for almost every other application, requirements on spreadsheets change

due to the changing environment. Thus, the problem of evolution of spreadsheets arises.

The update and evolution of spreadsheets is the uttermost source of errors that may

have severe impact.

In this paper, we will introduce a model-based approach to spreadsheet evolution by

propagating updates on spreadsheet models (i.e. ClassSheets) to spreadsheets. To this

end, update commands for the ClassSheet layer are automatically transformed to those

for the spreadsheet layer. We describe spreadsheet model update propagation using a

formal framework and present an integrated tool suite that allows the easy creation and

safe update of spreadsheet models. The presented approach greatly contributes to the

problem of software evolution and maintenance for spreadsheets and thus avoids many

errors that might have severe impacts.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Spreadsheets are one of the most popular and impor-
tant programming languages used in business applica-
tions today. Estimates say that ‘‘each year tens of millions
of managers and professionals around the world create
hundreds of millions of spreadsheets’’ [1]. Reasons for this
wide-spread use of spreadsheets are the ease of creating
highly sophisticated spreadsheet applications using the

simple and intuitive two-dimensional tabular layout and
of course the fast and broad availability of spreadsheet
applications. Due to their availability to non-experts,
spreadsheets belong to the category of end-user develop-
ment environments. However, the simplicity of spread-
sheets is misleading. Although, the spreadsheet user
group usually is able to develop complex spreadsheets,
the users often do not have the knowledge to prevent
errors leading to error-prone and unstructured spread-
sheets [2]. Studies estimate rates of at least 80 percent of
erroneous spreadsheets [3,4]. How costly these errors can
be is evident in recent news stories. For example, in 2006,
the Office of Government Commerce Buying Solutions
erred in informing 29 suppliers that they had been
successful in the public sector tendering process. In a

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

1045-926X/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jvlc.2011.11.009

$ This paper has been recommended for acceptance by Shi Kho

Chang.
n Corresponding author. Tel.: þ49 5251 60 3844.

E-mail addresses: luckey@upb.de (M. Luckey),

erwig@eecs.oregonstate.edu (M. Erwig), engels@upb.de (G. Engels).

Journal of Visual Languages and Computing 23 (2012) 267–286

www.elsevier.com/locate/jvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2011.11.009
dx.doi.org/10.1016/j.jvlc.2011.11.009
dx.doi.org/10.1016/j.jvlc.2011.11.009
mailto:luckey@upb.de
mailto:erwig@eecs.oregonstate.edu
mailto:engels@upb.de
dx.doi.org/10.1016/j.jvlc.2011.11.009


subsequent letter, they stated: ‘‘Unfortunately, [we are]
not, as we had hoped, in a position to accept your tender
at this time. This is because an error in the original
evaluation spreadsheet has been identified, necessitating
rescoring of all tenders for this projectythis error has
now been corrected and this has caused a small number
of changes to the original award decision’’ [5].

Reasons for these failures are manifold, the most
important reason being the missing business model. A
business model of spreadsheets specifies which business
entities are represented by the specific spreadsheet. For
instance, a spreadsheet for budget calculation may com-
prise entities like category or year (cf. Fig. 1, categories in
rows 4 and 5 and years in columns C up to H). A
spreadsheet’s business model is not given explicitly to
the spreadsheet application, but usually is kept in the
developer’s idea and captured implicitly in the spread-
sheet’s layout and data. Taking into account the complex-
ity of today’s spreadsheets, the gap between the implicit

business model of a spreadsheet and the resulting imple-
mentation (i.e. the spreadsheet itself) is too large. Fig. 2
shows the current approach of spreadsheet development.
The user has an idea of the spreadsheet’s business model
in mind and develops the spreadsheet accordingly. How-
ever, spreadsheet development is very low-level and
current spreadsheet applications do not allow to imple-
ment all elements of the business model. The semantic
gap between the implicit business model and the spread-
sheet leads to misleading error reports (e.g. the spread-
sheet application complains about a formula that differs
from surrounding formulas) or even missed errors.
Spreadsheet applications like Microsoft Excel fail to suffi-
ciently mitigate this situation. The reason for this failure
is that the business model is not described explicitly and
thus cannot be used to automatically validate the current
state of a spreadsheet (i.e. the inserted data, formulas, and
references). Bridging the described gap between the
business model (captured in the developer’s idea) and
the IT implementation is recently known under Business/

IT Alignment. The need for Business/IT alignment was
emphasized by the Sarbanes-Oxley Compliance (see [6])
leading to plenty of tools that are concerned with increas-
ing the quality of use and development of spreadsheets.
However, these approaches rather provide process gui-
dance and support security aspects but do not tackle the
problem at its root, the gap between business and IT. But
how can the business model help to prevent errors?

Usually, errors are produced while changing a spread-
sheet. We distinguish two different kinds of spreadsheet
changes, namely instance evolution and model evolution.
Both kinds of changes are part of spreadsheet evolution.
Instance evolution describes changes that concern a
spreadsheet’s data but not its representation and inter-
relations. For instance, inserting a new category in the
budget spreadsheet mentioned above is part of instance
evolution. In turn, model evolution describes changes that
concern the relation between data (e.g. formulas) or the
insertion and deletion of data types. For instance, the
insertion of a new column that holds a new type of data
(e.g. an exchange rate for given costs) is a change at the
underlying business model. Those changes must be
applied to all inserted data, e.g. the exchange rate must
be inserted for all categories and years. See Fig. 3 for the
distinction of instance evolution and model evolution. For
reasons of understandability, we chose UML class dia-
grams [7] to represent the business model. Of course
every other representation is applicable, e.g. the Entity
Relationship Model [8]. Both instance and model evolu-
tions are sources of errors. The most frequent error in

=SUM(E6;H6)

Name

Apples

Bananas

Budget

Category

Total

Year

2009

Total

=SUM(E4;H4)

=SUM(E5;H5)

=SUM(E4;E5)

A B C D E I
1

2

3

4

5

6

Year

2010

=SUM(H4;H5)

0 0 =(C5*D5)

0 0 =(C4*D4)

Qnty Cost Total

0 0 =(F5*G5)

0 0 =(F4*G4)

Qnty Cost Total

F G H

Fig. 1. A spreadsheet for budget calculation.

End-User

Spreadsheet

low level
development

current approach

develops
& uses

missing
business model

Implicit
Business Model

in Mind

semantic gap

Fig. 2. The current spreadsheet development approach.

M. Luckey et al. / Journal of Visual Languages and Computing 23 (2012) 267–286268



Download	English	Version:

https://daneshyari.com/en/article/523730

Download	Persian	Version:

https://daneshyari.com/article/523730

Daneshyari.com

https://daneshyari.com/en/article/523730
https://daneshyari.com/article/523730
https://daneshyari.com/

