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a b s t r a c t

On modern multi-core, many-core, and heterogeneous architectures, floating-point computa-

tions, especially reductions, may become non-deterministic and, therefore, non-reproducible

mainly due to the non-associativity of floating-point operations. We introduce an approach

to compute the correctly rounded sums of large floating-point vectors accurately and effi-

ciently, achieving deterministic results by construction. Our multi-level algorithm consists of

two main stages: first, a filtering stage that relies on fast vectorized floating-point expansion;

second, an accumulation stage based on superaccumulators in a high-radix carry-save repre-

sentation. We present implementations on recent Intel desktop and server processors, Intel

Xeon Phi co-processors, and both AMD and NVIDIA GPUs. We show that numerical repro-

ducibility and bit-perfect accuracy can be achieved at no additional cost for large sums that

have dynamic ranges of up to 90 orders of magnitude by leveraging arithmetic units that are

left underused by standard reduction algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The increasing computational power of current computers enables one to solve more and more complex problems. That leads

to a higher number of floating-point operations to be performed. Each of these operations potentially causes a round-off error.

Because of the round-off error propagation, some problems must be solved with a wider floating-point format. This is especially

the case for applications that carry out very complicated and enormous tasks in scientific fields such as quantum field theory,

supernova simulation, semiconductor physics, or planetary orbit calculations [1]. Since Exascale computing (1018 operations per

second) is likely to be reached within a decade, getting accurate results in floating-point arithmetic on such computers is an open

challenge.

The reproducibility of parallel reductions involving floating-point addition is becoming a serious issue, as noted in the DARPA

Exascale Report [2]. Large-scale summations typically appear within fundamental numerical blocks such as dot product or nu-

merical integration. As finite-precision floating-point addition is not associative, the result of a summation may vary from one

parallel machine to another or even from one run to another. These discrepancies worsen on heterogeneous architectures – such
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as clusters composed of standard CPUs in conjunction with GPUs and/or accelerators like Intel Xeon Phi – which combine to-

gether different programming environments that may follow different floating-point models and offer different intermediate

precision or different operators [3,4]. For instance, Intel acknowledges in [5] that “there is no way to ensure bit-for-bit reproducibil-

ity between code executed on Intel®Xeon processors and code executed on Intel®Xeon PhiTMco-processors, even for fixed number of

threads or for serial code”. Non-determinism of floating-point calculations in parallel programs causes validation and debugging

issues, and may even lead to deadlocks [6]. We expect these problems will get increasingly critical as the trend towards large-

scale heterogeneous platforms continues.

In this work, we aim at addressing both accuracy and reproducibility in the context of parallel summation. We advocate to

compute the correctly rounded result of the exact sum. The correct rounding criterion guarantees a unique, well-defined answer,

ensuring bit-wise reproducibility. In addition, the correctly-rounded result is also the most accurate answer possible in the given

floating-point format.

Without dedicated hardware support, large-scale correctly rounded sums have been considered impractical since computing

the exact sum in software was deemed to be too costly [7]. The current paper revisits this assumption. We show that: 1. The

computation of the exact sum can be carried out at the affordable cost using a large fixed-point accumulator, which is named

a superaccumulator1; 2. The overhead can be made negligible on large sums with low to moderate dynamic ranges using vec-

torized floating-point expansions. Besides offering the best possible accuracy of the result, our approach guarantees the strict

reproducibility by always returning the correctly rounded value of the exact result.

The paper is organized as follows. Section 2 describes main aspects of floating-point arithmetic and reviews floating-

point expansions as well as superaccumulators. Section 3 presents our multi-level approach to superaccumulation. We expose

in Section 4 various implementations and results on multi- and many-core architectures. Finally, we discuss related works and

draw conclusions in Sections 5 and 6, respectively.

2. Floating-point arithmetic

Floating-point arithmetic consists in approximating real numbers with a significand, an exponent, and a sign:

x = ± x0.x1 . . . xM−1︸ ︷︷ ︸
mantissa

×be, 0 ≤ xi ≤ b − 1, x0 �= 0,

where b is the basis (2 in our case), M is the precision, and e stands for the exponent that is bounded (emin ≤ e ≤ emax ).

The IEEE-754 standard [8], which was revised in 2008, specifies floating-point formats, see Table 1, and operations. In this

paper, we consider the binary64 or double-precision format, although our strategy is applicable to the other formats as well.

Floating-point representation allows numbers to cover a wide dynamic range. Dynamic range is defined as the absolute ratio

between the number with the largest magnitude and the number with the smallest non-zero magnitude in a set. For instance,

binary64 can represent positive numbers from 4.9 × 10−324 to 1.8 × 10308, so it covers a dynamic range of 3.7 × 10631.

Table 1

Main floating-point formats in the IEEE-754 standard.

Type Size Mantissa Exponent Unit rounding Interval

binary32 32 bits 23+1 bits 8 bits u = 21−24 ≈ 1, 92 × 10−7 ≈10±38

binary64 64 bits 52+1 bits 11 bits u = 21−53 ≈ 2, 22 × 10−16 ≈10±308

The standard requires correctly rounded results for the basic arithmetic operations (+, −, ×, /,
√ ). It means that the opera-

tions are performed as if the result was first computed with an infinite precision and then rounded to the floating-point format.

Several rounding modes are provided. In this paper, we will assume the rounding-to-nearest mode. It means that an operation re-

turns the closest floating-point number to the exact result, breaking ties by rounding to the floating-point number with the even

significand. The non-associativity of floating-point addition occurs due to rounding errors while performing addition of num-

bers with different exponents. It leads to the cancellation phenomenon which consist in the elimination of the lowest-order bits

of the sum. For example, denoting ⊕ the addition in binary64floating-point arithmetic, ( − 1 ⊕ 1) ⊕ 2−53 �= −1 ⊕ (1 ⊕ 2−53)
since ( − 1 ⊕ 1) ⊕ 2−53 = 2−53 and −1 ⊕ (1 ⊕ 2−53) = 0. Thus, the accuracy of a floating-point summation depends on the order

of the evaluation. More detailed explanation can be found in the main references on floating-point arithmetic [9,10].

Two approaches enable the addition of floating-point numbers without incurring round-off errors. The first solution com-

putes the error which occurred during rounding using floating-point expansions in conjunction with error-free transformations

and uses it to correct the answer and is described in Section 2.1. The second solution exploits the finite range of representable

floating-point numbers by storing every bit in a very long vector of bits and is described in Section 2.2.

1 We use names long accumulator and superaccumulator interchangeably.
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