Journal of Visual Languages and Computing 19 (2008) 485-498

journal homepage: www.elsevier.com/locate/jvic

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

Using scenario-based requirements to direct research on

web macro tools ™

Christopher Scaffidi **, Allen Cypher !, Sebastian Elbaum ¢?,

Andhy Koesnandar 9, Brad Myers 3

2 Carnegie Mellon University, 4104 Wean Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

b IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA

€ Computer Science and Engineering Department, 261 Avery Hall, University of Nebraska, Lincoln, NE 68588, USA
d Computer Science and Engineering Department, University of Nebraska, Lincoln, NE 68588, USA
€ Carnegie Mellon University, 3517 Newell-Simon Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

ARTICLE INFO

ABSTRACT

Keywords:

End-user programming
Web macros

Scripting

Web macros automate the interactions of end users with web sites and related
information systems. Though web macro recorders and players have grown in
sophistication over the past decade, these tools cannot yet meet many tasks that people

perform in daily life. Based on observations of browser users, we have compiled ten
scenarios describing tasks that users would benefit from automating. Our analysis of
these scenarios yields specific requirements that web macro tools should support if those
tools are to be applicable to these real-life tasks. Our set of requirements constitutes a
benchmark for evaluating tools, which we demonstrate by evaluating the Robofox,
CoScripter, and iMacros tools.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Information workers, webmasters, and other people
often need to perform repetitive tasks in a web browser,
which is tedious and error-prone. In response, researchers
and companies have provided numerous tools intended to
help users automate web browser tasks [1,4,5,10,11,12,
13,18,22]. Typically, these tools follow the programming-
by-example (PBE) paradigm: a recorder watches the user

* Portions of this article previously appeared as C. Scaffidi, A. Cypher,
S. Elbaum, A. Koesnandar, and B. Myers, Scenario-based requirements for
web macro tools, in: VL/HCC'O7: Proceedings of the 2007 IEEE
Symposium on Visual Languages and Human-Centric Computing, 2007,
pp. 197-204.
* Corresponding author. Tel.: +1412 268 3564; fax: +1412268 5576.
E-mail addresses: cscaffid@cs.cmu.edu (C. Scaffidi),
acypher@us.ibm.com (A. Cypher), elbaum@cse.unl.edu (S. Elbaum),
akoesnan@cse.unl.edu (A. Koesnandar), bam@cs.cmu.edu (B. Myers).
1 Tel.: +1408 927 2513; fax: +1408 927 2100.
2 Tel.: +1402 472 6748; fax: +14024727767.
3 Tel.: +1412268 5150; fax: +1412 268 1266.

1045-926X/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jvlc.2008.04.002

perform operations, determines the user’s intent, and
generates a “web macro” to represent that intent (gen-
erally as a sequence of steps). Later, a macro player
executes the macro on new data. Applying PBE to web
browser automation has seemed promising, since the
paradigm had previously been successfully applied in
other contexts, such as user interface design [14] and
HyperCard programming [3].

Web macro tools offer several benefits. First, they offer
significant time savings to users. In addition, when a
procedure in a large web application is complex and hard
to learn, then users who have mastered that difficult
procedure can create a web macro as a teaching tool for
other users, in order to encapsulate and communicate the
steps required to perform the procedure. Finally, web
application developers can use web macros to create
automated test suites.

Given these promised benefits and the arrival of
commercial web macro tools (e.g. [7]), it might seem
that web macro tools should be in widespread use,
particularly among information workers, whose work in

www.sciencedirect.com/science/journal/yjvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2008.04.002
mailto:cscaffid@cs.cmu.edu
mailto:acypher@us.ibm.com
mailto:elbaum@cse.unl.edu
mailto:akoesnan@cse.unl.edu
mailto:bam@cs.cmu.edu

486 C. Scaffidi et al. / Journal of Visual Languages and Computing 19 (2008) 485-498

web browsers is highly repetitive [21]. Moreover, users
seem to be generally capable of understanding the
process of recording and replaying macros, as 42% of
information workers report that they or their subordinates
recorded spreadsheet macros in the past 3 months,
and 33% similarly report recording of word processor
macros [20].

Despite these factors, web macro tools do not seem
to be in widespread use. One reason is that the web
context introduces new challenges that did not apply in
traditional PBE. One such challenge is the frequent
changes to web sites’ structure, which can cause web
macros to fail without warning. In addition, whereas
many traditional macro tools only need to operate in
one environment (such as HyperCard [3]), many office
tasks that involve a web browser also involve other
applications, such as spreadsheets. Automating these
tasks requires a web macro tool to support inter-applica-
tion integration.

The contribution of this paper is a methodical char-
acterization of the requirements that web macro tools must
support in order to be useful for many real-world tasks. An
additional contribution is to demonstrate that these
requirements serve as a helpful benchmark for evaluating
tools and identifying beneficial areas of work. The require-
ments that we have identified include support for trigger-
ing macros, using objects on web pages, adapting to site
changes, reading and writing data outside of pages,
transforming data, executing control structures, recovering
from failure, and supporting macro maintenance.

To help ensure the validity of these requirements,
we base them on a range of real-world tasks that
should ideally be automatable with web macros. We
selected these tasks because automating them would
offer clear benefits to end users. For example, automating
one time-consuming task was so desirable to one end
user that he paid a professional PHP/Perl programmer
to automate the task; open source programmers auto-
mated two other tasks to help people. Certain tasks
are ones that we regularly perform, and we would
like to automate these tasks to save ourselves time, but
we have no suitable PBE macro tool. Finally, we have
observed co-workers manually performing particular
tasks, and automating these tasks would offer significant
time savings.

We do not claim that our list of requirements is
complete in the sense that satisfying them will necessarily
make tools perfect for all imaginable tasks. Instead, by
linking requirements to a diverse set of specific tasks, our
benchmark indicates the wide range of real-world applic-
ability that a tool would gain by satisfying certain
requirements. In addition, the benchmark constitutes a
seed that can grow as researchers contribute more
scenarios where macros would be beneficial.

Section 2 presents related work. Section 3 uses
a scenario format to describe tasks, and Section 4
analyzes scenarios to identify tool requirements. Section
5 demonstrates using requirements as a benchmark for
evaluating the Robofox, CoScripter, and commercially
available iMacros tools, thereby identifying areas for
future work.

2. Related work

Many papers use scenarios to motivate and explain a
PBE tool’s features [1,4,5,10,11,12,13,18,22]. Generally, a
paper first presents the scenario in a succinct form to
motivate the work; later, the paper describes the scenario
in some additional detail and discusses how to use a new
tool to automate the scenario.

For example, a paper on the Turquoise web macro tool
presents a scenario of combining clippings from web sites
into a newspaper, and the paper also discusses a scenario
of repeatedly submitting a web form in order to purchase
sandwiches [13]. As another example, a paper on the Creo
tool describes a scenario of reading a recipe on a web site,
then copying each ingredient into a web form on another
site to compute the recipe’s nutritional value [4].

Such scenarios meet the intended purpose of motivat-
ing and demonstrating a new tool. However, they have
two limitations.

First, each paper generally only mentions one or two
scenarios and rarely describes any scenario details that are
unsupported by the tool. Thus, such scenarios rarely
highlight opportunities for extending the tool, they
provide limited support for evaluating future tools, and
they offer no uniform way to compare the capabilities of
different tools.

Second, the “pedigree” of scenarios is rarely documen-
ted: that is, it is usually unclear whether each scenario
was identified by observations of end users or if it is
hypothetical. Consequently, it is difficult to determine if
supporting the scenario will make the tool useful in
practice.

In this paper, we specifically select a variety of
scenarios that highlight opportunities for future work.
In addition, we have documented the source of each
scenario, providing traceability to help ensure that
automating each scenario would give real benefit to
users.

The identified requirements comprise a benchmark to
measure tool improvement. Our intent is similar to that
behind the Test Suite for Programming by Demonstration
[16], a benchmark for traditional (non-web) PBE tools.
Like that Test Suite, our benchmark illustrates the wide
range of potential applications for tools and enables
researchers to test tools with real-world tasks.

Our requirements can also be used to guide the design
of future tools. In this sense, our intent is similar to that
of user studies that have uncovered requirements for
end-user programming tools other than web macro
tools. Examples include a survey of programmers
that influenced the design of the FlashLight tool for
creating web applications [17], as well as field studies
of system administrators that guided the design of
the A1l tool for creating scripts that read and write
data from servers [9]. Empirical studies have also
preceded the design of programming tools for other
particular populations such as children [15] and females
[2]. These studies, like our work, are an application of
the standard user-centered design process to the
specific domain of end-user programming languages and
environments.

Download English Version:

https://daneshyari.com/en/article/523788

Download Persian Version:

https://daneshyari.com/article/523788

Daneshyari.com

https://daneshyari.com/en/article/523788
https://daneshyari.com/article/523788
https://daneshyari.com/

