
Parallel Computing 48 (2015) 108–124

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

A data-driven paradigm for mapping problems

Peng Zhang a,∗, Ling Liu b, Yuefan Deng c,d

a Biomedical Engineering Department, Stony Brook University, NY 11794-8151, United States
b Marine and Atmospheric Science Department, Stony Brook University, NY 11794-5000, United States
c Applied Mathematics Department, Stony Brook University, NY 11794-3600, United States
d National Supercomputer Center in Jinan, Shandong 250101, China

a r t i c l e i n f o

Article history:

Received 30 September 2013

Revised 13 January 2015

Accepted 5 May 2015

Available online 13 May 2015

Keywords:

Data mapping

Task mapping

Parallel computing

Data movement matrix

a b s t r a c t

We present a new data-driven paradigm for solving mapping problems on parallel computers.

This paradigm targets at mapping data modules, instead of task modules, onto multiple pro-

cessing cores. By dependency analysis of data modules, we devise a data movement matrix

to reduce the need of manipulating task program modules at the expenses of handling data

modules. To visualize and quantify the complex maneuver, we adopt the parallel activities

trace graphs introduced earlier. To demonstrate the procedure and algorithmic values of our

paradigm, we test it on the Strassen matrix multiplication and Cholesky matrix inversion al-

gorithms. Mapping tasks has been more widely studied while mapping data is a new approach

that appears to be more efficient for data-intensive applications that are becoming prevalent

for today’s parallel computers with millions of cores.

Published by Elsevier B.V.

1. Introduction

Cellular networks such as torus and mesh interconnects [1–5] are deeply exploited for the communication sub-systems to

accommodate the ever-increasing needs of coupling millions of processing cores in most of today’s advanced parallel computers

[1,6]. The growing complexities of such communication sub-systems coupled with intensified performance requirements of such

sub-system make it a serious challenge to design the state-of-the-art communication sub-system and the programming model

for handling large data sets [7–15]. The programming model [16,17] currently adopted in many applications are facing tight

bottlenecks even at the parallelism for tens of thousands of processes. For emerging supercomputers with millions of cores, we

need to develop new programming paradigms and, unfortunately, untangling and streamlining the processes of non-uniform

remote memory accesses, heterogeneous I/O, and numeral computation for such large-scale systems [17] is a daunting task.

For a small aspect, researchers have studied the task mapping paradigm (TMP) to map task modules onto processing cores for

minimizing unnecessary communications and processes idling [7,18] and then tested on various application for many parallel

computers demonstrated significant performance improvement [8–15,19].

TMP is generally formulated in the graph theoretic terms [7,14], in which both the application requirement and the network

information are represented in graphs. The parallel application is represented as a directed acyclic graph (DAG), in which a ver-

tex is a compute task module that encapsulates a set of operations with a specific data set. The network is represented as a DAG

whose vertex represents a processor and the edge represents the direct link between two adjacent processors. The task mapping

seeks the map for mapping the task graph onto the network graph, i.e., assignment of task modules onto processors. The objec-

tive of the task mapping is to essentially reduce communication cost by strategically placing task modules on the appropriate

∗ Corresponding author. Tel.: 6318890809.

E-mail address: Peng.Zhang@StonyBrook.edu, pzhang99@gmail.com (P. Zhang).

http://dx.doi.org/10.1016/j.parco.2015.05.002

0167-8191/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.parco.2015.05.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2015.05.002&domain=pdf
mailto:Peng.Zhang@StonyBrook.edu
mailto:pzhang99@gmail.com
http://dx.doi.org/10.1016/j.parco.2015.05.002

P. Zhang et al. / Parallel Computing 48 (2015) 108–124 109

processors, while balancing the compute load on processors. For this, the hop-bytes metric is usually used for measuring the

solution quality of the mapping algorithm [7,9,10,12–14,18].

The TMP formulation, naturally, concentrates on optimizing communications by manipulating the placement of task modules

and rather than data modules. From the data perspective, we study a new paradigm for the mapping problem that describes an

algorithm in this paper. This paradigm substitutes the data modules for the task modules and the data movement for the inter-

task communication and dependency. Our new data-driven mapping paradigm (DMP) seeks the best assignment of data modules

to processor cores to minimize the total execution time including local computation and data availability as well as idling.

This paper is organized as follows: the basic concepts and formulism of data-driven mapping paradigm are discussed in

Section 2 in which the parallel activities trace graphs are devised for help decouple the computation and communication activ-

ities. Section 3 demonstrates the applications of the DMP to the Strassen’s matrix multiplication and Cholesky matrix inversion

algorithms. This section illustrates and compares the basic concepts of data and task dependency graphs and matrices. Discus-

sions and conclusions are drawn in the last section.

2. Formulation

Like any numerical algorithms, parallel algorithms need to balance accuracy, efficiency, programming flexibilities among

others. The data-driven mapping paradigm (DMP) we formulate for representing, managing and optimizing algorithms will

demonstrate such balance and programmability. Section 2.1 introduces such a formalism while Section 2.2 shows the mechanism

of the parallel activities trace (PAT) graphs for the parallel and highly tangled data movements.

2.1. Data-driven mapping paradigm

Definition 1. (data module): An algorithm is assumed to consist of a set of finite data modules D = {ds} (1 ≤ s ≤ n) and task

modules. A data module is the smallest unit of data that can be communicated as a whole packet over network and processed by

a single processing core. If a data module exists before processing of the algorithm, it is referred to as an initial data module; oth-

erwise, it is referred to as an intermediate data module. Clearly, expected results of an algorithm are a collection of intermediate

data modules.

Definition 2. (data dependence): The generation of an intermediate data module ds is assumed to depend on one or several data

modules ds1,…, dsm and the generation method fs for ds is specified in the algorithm: ds = fs (ds1,…, dsm). Each intermediate data

module associates with one specific method. Then, ds depends on ds1,…, dsm; ds is a dependent on dsi and dsi is an antecedent of ds

where i∈[1, m]. The data dependence is always unidirectional. The initial data modules have no dependents while an intermediate

data module may have multiple dependents and has at least one antecedent.

Definition 3. (data dependence graph and matrix): The data dependence is represented as a directed acyclic graph Gd (Vd,

Ed). The vertices in Vd represent data modules and the edges in Ed represent direct dependence between data modules. If dj is

dependent on di, there is directed edge eij from di to dj. The adjacent matrix of Gd is referred to as the data dependence matrix

A = [aij]n × n whose entry aij = 1 if and only if di is an antecedent of dj and aij = 0 otherwise. The number of vertices representing

intermediate data modules in DMP equals the number of atomic tasks in TMP.

Definition 4. (data relevance): If two data modules di and dj are an antecedent of a same data module dk, these two data modules

di and dj are related to each other through dk. All of the antecedents of an intermediate data module dk form a relevant set of dk

denoted as �r (dk).

The number of computing tasks in TMP can be calculated in the data dependency matrix A as shown by the following two

theorems:

Theorem 1. Given a data dependency matrix A = [aij]n × n of an algorithm, a relevant set of dk is �r (dk) = {dk|aik = 1}.

Theorem 2. Given a data dependency matrix A = [aij]n × n of an algorithm and let K = {k∈[1, n] | �r (dk) �= �}, then the total

number of computing tasks is n–|K| where |K| is the number of elements in the set K and � is the empty set.

Definition 5. (accomplishment criterion of an algorithm): It is always assumed in TMP that a processor executes a task that is

assigned to it and thus an algorithm is accomplished after all tasks are executed. Similarly, in DMP, we assume that a processor

executes a method fk (�r (dk)) for dk as soon as it receives all of the data modules dk1,…, dkm in �r (dk) = {dk1,…, dkm}. Therefore,

an algorithm is accomplished as long as every relevant set has been completely assembled on the processor.

We may assume, without losing generality, that any intermediate data module dk depends on only two data modules, i.e.,

|�r (dk)| = 2. Thus, an algorithm is accomplished as long as a pair of related data modules meets at a same processor.

Definition 6. (data movement matrix): As an algorithm is executed in parallel, a task needs to communicate with other tasks in

TMP and, similarly, a data module must traverse the interconnection networks to join other relevant modules in DMP. Given k

processors, p1 through pk, allocated for an algorithm with data modules D = {ds} (1 ≤ s ≤ n), a matrix for directing data module

movement between processors is denoted as M = [mij]k × n whose entry mij = 2 iff dj is initially mapped to pi; mij = 1 iff pi

Download English Version:

https://daneshyari.com/en/article/523799

Download Persian Version:

https://daneshyari.com/article/523799

Daneshyari.com

https://daneshyari.com/en/article/523799
https://daneshyari.com/article/523799
https://daneshyari.com

