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a b s t r a c t

Known as an effective heuristic for finding optimal or near-optimal solutions to difficult
optimization problems, a genetic algorithm (GA) is inherently parallel for exploiting high
performance and parallel computing resources for randomized iterative evolutionary com-
putation. It remains to be a significant challenge, however, to devise parallel genetic algo-
rithms (PGAs) that can scale to massively parallel computer architecture (also known as
the mainstream supercomputer architecture) primarily because: (1) a common PGA design
adopts synchronized migration, which becomes increasingly costly as more processor
cores are involved in global synchronization; and (2) asynchronous PGA design and asso-
ciated performance evaluation are intricate due to the fact that PGA is a type of stochastic
algorithm and the amount of computation work needed to solve a problem is not simply
dependent on the problem size. To address the challenge, this paper describes a scalable
coarse-grained PGA–PGAP, for a well-known NP-hard optimization problem: Generalized
Assignment Problem (GAP). Specifically, an asynchronous migration strategy is developed
to enable efficient deme interactions and significantly improve the overlapping of compu-
tation and communication. Buffer overflow and its relationship with migration parameters
were investigated to resolve the issues of observed message buffer overflow and the loss of
good solutions obtained from migration. Two algorithmic conditions were then established
to detect these issues caused by communication delays and improper configuration of
migration parameters and, thus, guide the dynamic tuning of PGA parameters to detect
and avoid these issues. A set of computational experiments is designed to evaluate the sca-
lability and numerical performance of PGAP. These experiments were conducted for large
GAP instances on multiple supercomputers as part of the National Science Foundation
Extreme Science and Engineering Discovery Environment (XSEDE). Results showed that,
PGAP exhibited desirable scalability by achieving low communication cost when using
up to 16,384 processor cores. Near-linear and super-linear speedups on large GAP instances
were obtained in strong scaling tests. Desirable scalability to both population size and the
number of processor cores were observed in weak scaling tests. The design strategies
applied in PGAP are applicable to general asynchronous PGA development.
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1. Introduction

Inspired by natural selection, Genetic Algorithm (GA) represents a generic heuristic method for finding near-optimal or
optimal solutions to difficult search and optimization problems [1]. GA mimics iterative evolutionary processes with a set of
solutions encoded into a population at the initialization stage. Through GA operators (e.g., selection, crossover, mutation, and
replacement) that are often stochastic, the population evolves based on the rule of ‘‘survival of the fittest’’ [2,3]. Such an evo-
lutionary process stops when the population converges to solutions of specified quality. The computational challenges of GA
are attributed to both problem-specific characteristics (e.g., problem ‘difficulty’ (e.g., NP-hard), problem size, the complexity
of fitness function, and distribution characteristics of solution space specific to problem instances), and runtime efficiency of
stochastic search [4].

High performance and parallel computing has been extensively studied to tackle the aforementioned computational chal-
lenges in GA as GA has inherent parallelism embedded in the evolutionary process [5]. For example, a population can be nat-
urally divided into a set of sub-populations (also called demes) that evolve and converge with a significant level of
independence. Various types of parallel genetic algorithms (PGAs) have been developed and broadly applied in a rich set
of application domains [5–8]. More interestingly, previous work by Alba and Troya [9] showed that PGA computation not
only improves computational efficiency over sequential GAs, but also facilitates parallel exploration of solution space for
obtaining more and better solutions. In fact, Hart et al. [10] showed that running PGA even on a single processor core out-
performed its sequential counterpart. Therefore, PGA is often considered and evaluated as a different algorithm rather than
just the parallelization of its corresponding sequential GA.

This paper describes a scalable PGA (PGAP) to exploit massively parallel high-end computing resources for solving large
problem instances of a classic combinatorial optimization problem – the Generalized Assignment Problem (GAP). GAP
belongs to the class of NP-hard 0–1 Knapsack problems [11–13]. Numerous capacity-constrained problems in a wide variety
of domains can be abstracted as GAP instances [14] such as the job-scheduling problem in computer science [15] and land
use optimization in geographic information science and regional planning [16]. Various exact and heuristic algorithms have
been developed to solve GAP instances of modest sizes [17]. However, in practice, problem instances often have larger sizes
while the problem solving requires quick solution time and the capability for finding a set of feasible solutions of specified
quality, which compounds the computational challenges.

Our PGA approach focuses on the scalability to massively parallel processor cores (referred to as cores hereafter) available
from high-end computing resources such as those provided by the National Science Foundation XSEDE [18] cyberinfrastruc-
ture. PGAP is a coarse-grained steady-state [19] PGA that searches solution space in parallel based on independent deme
evolution and periodical migrations among connected demes. Scalability is a key to efficiently exploiting a large number
of cores in parallel. Previous PGA implementations mostly rely on synchronization to coordinate parallelized operations
(e.g., the migration operation in coarse-grained PGAs and the selection operation in fine-grained PGAs), primarily because
the computation of PGA is an iterative process and it is straightforward to implement iteration-based synchronization. Syn-
chronization is often needed at two places: (1) waiting for all PGA processes to rendezvous before migration operations; and
(2) using synchronous communication to exchange data. While success on scaling PGA to many cores has been achieved
based on hardware instruction-level synchronization supported by SIMD architectures [20], we argue that the computational
performance of PGA is under-achieved through synchronizing iterations across massively parallel computing resources with
MIMD architecture [21].

Therefore, an asynchronous migration strategy is designed to achieve scalable PGA computation through a suite of non-
blocking migration operators (i.e., export and import) and buffer-based communications among a large number of demes
connected through regular grid topology. The asynchrony of migration is effective to not only remove the costly global syn-
chronization on deme interactions, but also allows for the overlapping of GA computation and migration communication.
Addressing buffer overflow issues caused by inter-processor communications and understanding their relationship to the
configuration of asynchronous PGA parameters are crucial to design scalable PGA on high-end parallel computing systems.
Through algorithmic analysis on PGAP, we identified two buffer overflow problems in exporting and importing migrated
solutions, respectively. In export operations, the overflow of the outgoing message buffer used by the underlying mes-
sage-passing library may cause runtime failure and abort the PGA computation. In import operations, the overflow of the
import pool maintained for receiving solutions from neighboring demes may cause the loss of good solutions. Through algo-
rithmic analysis, we derive two conditions to guide the setting of PGAP parameters, including migration parameters, topol-
ogy, and buffer sizes based on the underlying message passing communication library in order to detect and/or avoid
aforementioned buffer overflows. To the best of our knowledge, our work is the first to explicitly consider the relationship
between the configuration of asynchronous PGA parameters and underlying system characteristics so as to improve the reli-
ability of asynchronous PGAs.

Experiment results showed that, with the asynchronous migration strategy, our scalable PGA is able to efficiently utilize
16,384 cores with significantly reduced communication cost. Specific strong and weak scaling tests were designed to eval-
uate the scalability and numerical performance of PGAP because conventional weak and strong scaling methods are not
directly applicable to PGA. For example, the problem size used in conventional weak scaling is not a good indicator of the
amount of computation needed to achieve a certain solution quality in PGA. PGA and sequential GA also have different
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