
Distributed text search using suffix arrays

Diego Arroyuelo a,d,⇑,1, Carolina Bonacic b,2, Veronica Gil-Costa c,d,3, Mauricio Marin b,d,f,4,
Gonzalo Navarro f,e,5

a Dept. of Informatics, Univ. Técnica F. Santa María, Chile
b Dept. of Informatics, University of Santiago, Chile
c CONICET, University of San Luis, Argentina
d Yahoo! Labs Santiago, Chile
e Dept. of Computer Science, University of Chile, Chile
f Center of Biotechnology and Bioengineering, University of Chile, Chile

a r t i c l e i n f o

Article history:
Received 14 August 2013
Received in revised form 10 June 2014
Accepted 28 June 2014
Available online 11 July 2014

Keywords:
Distributed text search
Suffix arrays
Distributed text search engines

a b s t r a c t

Text search is a classical problem in Computer Science, with many data-intensive applica-
tions. For this problem, suffix arrays are among the most widely known and used data
structures, enabling fast searches for phrases, terms, substrings and regular expressions
in large texts. Potential application domains for these operations include large-scale search
services, such as Web search engines, where it is necessary to efficiently process intensive-
traffic streams of on-line queries. This paper proposes strategies to enable such services by
means of suffix arrays. We introduce techniques for deploying suffix arrays on clusters of
distributed-memory processors and then study the processing of multiple queries on the
distributed data structure. Even though the cost of individual search operations in
sequential (non-distributed) suffix arrays is low in practice, the problem of processing mul-
tiple queries on distributed-memory systems, so that hardware resources are used effi-
ciently, is relevant to services aimed at achieving high query throughput at low
operational costs. Our theoretical and experimental performance studies show that our
proposals are suitable solutions for building efficient and scalable on-line search services
based on suffix arrays.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the last decade, the design of efficient data structures and algorithms for textual databases and related applications has
received a great deal of attention, due to the rapid growth of the amount of text data available from different sources. Typical
applications support text searches over big text collections in a client–server fashion, where the user queries are answered
by a dedicated server [15]. The server efficiency—in terms of running time—is of paramount importance in cases where the

http://dx.doi.org/10.1016/j.parco.2014.06.007
0167-8191/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Address: Av. España 1680, Valparaíso, Chile. Tel.: +56 2 432 6722; fax: +56 2 432 6702.
E-mail addresses: darroyue@inf.utfsm.cl (D. Arroyuelo), carolina.bonacic@usach.cl (C. Bonacic), gvcosta@unsl.edu.ar (V. Gil-Costa), mauricio.marin@

usach.cl (M. Marin), gnavarro@dcc.uchile.cl (G. Navarro).
1 Funded by FONDECYT Grant 11121556, Chile.
2 Funded in part by DICYT-USACH Grant 061319BC.
3 Funded in part by CONICET-UNSL Grant 30310.
4 Funded in part by FONDEF IDeA Grant CA12i10314 and Basal funds FB0001, Conicyt, Chile.
5 Funded with Basal funds FB0001, Conicyt, Chile.

Parallel Computing 40 (2014) 471–495

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2014.06.007&domain=pdf
http://dx.doi.org/10.1016/j.parco.2014.06.007
mailto:darroyue@inf.utfsm.cl
mailto:carolina.bonacic@usach.cl
mailto:gvcosta@unsl.edu.ar
mailto:mauricio.marin@usach.cl
mailto:mauricio.marin@usach.cl
mailto:gnavarro@dcc.uchile.cl
http://dx.doi.org/10.1016/j.parco.2014.06.007
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


services demanded by clients generate a heavy work load. A feasible way to overcome the limitations of sequential comput-
ers is to resort to the use of several computers, or processors, which work together to serve the ever increasing client
demands [19].

One such approach to efficient parallelization is to distribute the data onto the processors, in such a way that it becomes
feasible to exploit locality via parallel processing of user requests, each on a subset of the data. As opposed to shared-memory
models, this distributed-memory model provides the benefit of better scalability [44]. However, it introduces new problems
related to the communication and synchronization of processors and their load balance.

This paper studies the parallelization of text indexes, in particular suffix arrays [39], in distributed memory systems, and
describes strategies to reduce the inter-processor communication and to improve the load balance at search time.

1.1. Indexed text searching

The advent of powerful processors and cheap storage has enabled alternative models for information retrieval, other than
the traditional one of a collection of documents indexed by a fixed set of keywords. One is the full text model, in which the
user expresses its information need via words, phrases or patterns to be matched for, and the information system retrieves
those documents containing the user-specified patterns. While the cost of full-text searching is usually high, the model is
powerful, requires no structure in the text, and is conceptually simple [5].

To reduce the cost of searching a text, specialized indexing structures are adopted. The most popular are inverted indexes
[5,10,68]. Inverted indexes are efficient because their search strategy is based on the vocabulary (the set of distinct words in
the text), which is usually much smaller than the text, and thus fits in main memory. For each word, the list of all its occur-
rences (positions) in the text is stored. Those lists are large and may be stored on secondary storage, or in the main memory
of the cluster nodes [10]. However, inverted indexes are suitable only for searching natural-language texts (which have
clearly separated words that follow some convenient statistical rules [5]). Suffix arrays or PAT arrays [39,28], on the other
hand, are more sophisticated indexing structures, which are superior to inverted indexes when searching for phrases or com-
plex queries such as regular expressions [5]. In addition, suffix arrays can be used to index texts other than natural language.
Examples of these applications include computational biology (DNA or protein sequences), music retrieval (MIDI or audio
files), East Asian languages (Chinese, Korean, and others), and other multimedia data files.

Pattern search on suffix arrays is based on binary search [39,28]; see Section 2.1 for further details. Processing a single
query X of length m in a text of length n takes Oðm log nÞ time on the standard sequential suffix array. One can also achieve
Oðmþ log nÞ time, yet by storing an extra array that doubles the space usage. Hence, trying to reduce such query time by
using a distributed-memory parallel computer of P processors is not very attractive in practical terms. In real applications,
however, many queries arrive at the server per unit of time. Such work load can be served by taking batches of Q queries.
Processing batches in parallel is appealing in this context, as one is more interested in improving the throughput of the
whole process rather than improving single operations.

To achieve this goal, a pragmatic (though naive) strategy would be to keep a copy of both the whole text database and the
search index in each server machine and route the queries uniformly at random among the P machines. For very large dat-
abases, however, each machine is forced to keep a copy of a large suffix array, often in secondary memory, which can dras-
tically degrade performance. A more sensible approach is to keep a single copy of the suffix array evenly distributed over the
P main memories. Now the challenge is to achieve efficient performance on a cluster of P machines that must communicate
and synchronize in order to serve every batch of queries. This is not trivial: on a naive partitioning of the suffix array, most
array positions are expected to reference to text stored in a remote memory. We study these problems in this paper in order
to achieve efficient text searching.

1.2. Problem definition and model of computation

In its most basic form, the full-text search problem is defined as follows: Given a text T½1 . . . n�, which is a sequence of n
symbols from an ordered alphabet R ¼ f1; . . . ;rg, and given a search pattern X½1 . . . m� (also over R), we want to find all the
occurrences of X in T. There are different kinds of queries for full-text search, depending on the application:

� locate queries, where one wants to report the starting positions in the text of the pattern occurrences, that is, the set
O ¼ fij1 6 i 6 n�mþ 1 ^ T½i . . . iþm� 1� ¼ X½1 . . . m�g.
� count queries, where one wants to count the number of pattern occurrences, that is, compute jOj.
� exist queries, where one wants to check whether X occurs in T or not, that is, we want to determine whether O ¼ ; or not.

In this paper we will study a variant of this problem suitable for parallel processing when throughput is emphasized: given a
set of Q patterns fX1½1 . . . m�;X2½1 . . . m�; . . . ;XQ ½1 . . . m�g, one wants to find the occurrences of each of these strings in T (we
use equal length for all the patterns for simplicity, but our results do not depend on that). We will focus on count queries. In
such a case, one wants to obtain the number of occurrences of each of the Q search patterns. The reason is that, on suffix
arrays, the algorithmic complexity of the problem lies on the counting part, and when this is solved, locating reduces to
merely listing the values in an array range. In addition, as we discuss in the Conclusions, it turns out that the strategies that
are best for counting are also the most promising ones for locating. On the other hand, many relevant applications rely solely

472 D. Arroyuelo et al. / Parallel Computing 40 (2014) 471–495



Download English Version:

https://daneshyari.com/en/article/523904

Download Persian Version:

https://daneshyari.com/article/523904

Daneshyari.com

https://daneshyari.com/en/article/523904
https://daneshyari.com/article/523904
https://daneshyari.com

