Parallel Computing 40 (2014) 1-33

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Review

Carrying on the legacy of imperative languages in the future @Cwsmm
parallel computing era

Mohammad Reza Selim **, Mohammed Ziaur Rahman "'

 Dept. of Computer Sc. and Engineering, Shahjalal University of Science and Technology, 3114 Sylhet, Bangladesh
b Zifern Ltd, Kuala Lumpur 59200, Malaysia

ARTICLE INFO ABSTRACT
Article history: There has been a renewed interest in dataflow computing models in recent years of tech-
Received 25 March 2013 nology scaling. Potentiality of exploiting huge parallelism, with the expense of low power,

Received in revised form 28 January 2014
Accepted 1 February 2014
Available online 6 February 2014

simpler circuit, less silicon area, is the main characteristic of a dataflow model. Growing
trends in housing large number of functional units in a single chip, making use of local
clocks, reducing energy consumptions, avoiding global wires are the main reasons behind
the resurgence of dataflow models. To program a dataflow machine, new architectures sug-
gest imperative languages rather than functional type dataflow languages or parallel lan-
guages because this is the right way to make the new architectures popular among the
general community. Although for several decades scientists have been working on how

Keywords:

Dataflow computing
Dataflow model
Parallel computing

High performance computing imperative languages can be used in dataflow models efficiently, there is no systematic
Imperative language review on those works. Existing reviews on dataflow paradigm mainly focus on the archi-
Compiler tectures. Although few papers review programming languages of dataflow architectures,

their discussions are limited to only dataflow languages and visual programming languages
which are fundamentally different from imperative languages. In this paper, we conduct a
systematic review on those works that attempt to provide a way to use imperative lan-
guages in any type of dataflow architectures. Our survey of compilers and related architec-
tures cover the aspects like translation mechanisms of program construct, their
optimization techniques, memory ordering methods, program allocation and scheduling
and special architectural features. We also present some of our observations and future
research directions obtained by exploring the literature.

© 2014 Elsevier B.V. All rights reserved.

Contents
B R (L o Ta L ) o U 2
2. Dataflow MOdELS . . . ..ottt e e e e e e e e 3
2.1, BaSiC PIiNCIPIeS . . ot ittt e e e e e e e 3
2.2, Types of dataflow MoOdels. . . ... ... i e e, 4
3. IMPeratiVe Jan UGS . . . o . ottt ettt e e e e e e e e e e e e 4
3.1. Imperative languages and tools in traditional parallel architectures. ............. ...ttt ninnenannn 5

* Corresponding author.
E-mail addresses: selim@sust.edu (M.R. Selim), m.ziaur.rahman@ieee.org, zia@zifern.com (M.Z. Rahman).
URL: http://www.zifern.com (M.Z. Rahman).

T The author was a visiting senior lecturer at University of Malaya during when this research was carried out.

http://dx.doi.org/10.1016/j.parco.2014.02.001
0167-8191/© 2014 Elsevier B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2014.02.001&domain=pdf
http://dx.doi.org/10.1016/j.parco.2014.02.001
mailto:selim@sust.edu
mailto:m.ziaur.rahman@ieee.org
mailto:zia@zifern.com
http://www.zifern.com
http://dx.doi.org/10.1016/j.parco.2014.02.001
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

2 M.R. Selim, M.Z. Rahman/ Parallel Computing 40 (2014) 1-33

3.1.1. Shared memory based languages and toolS . .. .......... ..ttt e e 5

3.1.2. Distributed memory based languages and tools. . . ......... . i e 6

3.1.3.  PGAS based languages and t001S . . . .. ..ottt e e e 6

3.1.4. GPGPU based languages and t00lS. . . . ... ..ttt ettt et et et e e 7

3.2. Imperative languages in dataflow architeCtures . . ... .. ..ottt ittt e e et ettt 7

4, Dataflow JangUAZES . . . . ..ottt e e e e e e 7
5. Imperative vs. dataflow JangUAZES . . . .. ..ottt e e e e e e 8
6. Compilers in dataflow paradigm. . . ... ... ottt e e 9
7. Challenges of using imperative languages in the dataflow paradigm. ... .......... ... i, 10
8. Translation from imperative languages to dataflow graphs . ........... . i e e 10
8.1, MaiN WOTKS . . et e e e 10
8.1.1.  AllAN’S AP PIOACH . . o ottt e e e e e e e 11

8.1.2.  SUMMER 0N MIDM . . ..ttt ettt e e e e e e e e e e e 12

8.1.3.  RC ON DTN, . Lo e e e e e e e e et e e e e e e e e e 16

8.1.4.  PasCal t0 IF ] ..ot e e e e 17

8.1.5. FGCL 0N data-driVen PrOCESSOT . . v vt vttt ettt e et e e e et et e et e et e e et ettt e e 19

B 1.6, WaVeSCalar . . . oottt e e e e e e e e 19

B 1.7, TRIPS . .ot e e e e e e e e 22

8.2.  Summary of Main WOTKS. . . . . ... e e e e e e 24

8.3, OtReT WOTKS. . o ottt e e 24
8.3.1.  MIller's apPIOaCh . . ..ot e e e e 25

8.3.2. Pascal 0N MIDM. . . ..ottt e e e e e e 25

8.3.3.  Fortran on TI'S DDP .. ...ttt e e e e e 25

8.3.4. Program Dependence Graph ... .. ......i.iuiii ittt e e e 26

8.3.5.  BeCK'S APPIOACH . ..ottt e e e e e e 26

8.3.6. Program dependence WeD . . ... .. ...ttt e e e 26

8.3.7. Macro dataflow COMPULALION. . . . vt vttt ettt e e e e e e e e e e e e e e e e e e e e e 26

8.3.8.  DEC-IL 0N SIGM A-T . .o et e e e e e e e e e e e e 27

8.3.0.  CASH . .o e e e e e e 28

9. Issues and future research dir€Ction. . . .. ... ... ittt e e e e 28
9.1. Exposing parallelism in Loops, Recursions and AITays . . . ... v vttt ettt et ettt et e et e et et ettt eanans 28

9.2, Handling aliasing. . . . ..ottt ettt e e e e e e e e e e e 28

9.3.  Program partitioning GranuUlarity . . . .. ..ottt e e e e e e e e 29

9.4, Program alloCation . ... ...ttt ittt ettt e et e e e e e e e e 29

9.5.  Managing resource alloCation. . . . ... ...ttt ittt ettt e e e e e 29

9.6. Representation Of data StIUCLUIES . . .. .ottt ettt ettt et e e e ettt et e ettt ettt eaaenn 29

9.7.  Sequential MEMOTY SEIMANTICS . . . .\ vttt ettt ettt e et et et et e et e e et ettt e e e e ettt 29

9.8.  Sharing Of data STIUCKUIES. . . . . o\ vttt ittt ettt e e et e et e e ettt e e e e e e ettt e e et ettt eaenans 29

9.9.  Speculation based @XECULION. . . . . .. vt ittt ettt e et ettt et e e e e e e e e 30
9.10.  On chip distributed arChiteCtUIES. . . . . ..ottt ettt et e e e e ettt e e e et et et 30

10.  Concluding TeMATKS . . . . ..ottt ettt et e e e e e e e 30
REIETIICES . . .ttt et e e e e e e e e e e e e e e e e e e e 31

1. Introduction

Traditionally, the von Neumann computing model is treated as an inherent sequential model of computation [13]. The
sequentiality comes from the fact that execution of the current instruction decides which instruction will be the next rep-
resentative. This is the reason it is called a control flow model. In this model, we do not have a natural way to perform the
execution of an instruction before the execution of the previous instruction, in the control flow path, is finished. Next
instruction to be executed is pointed to and triggered by the program counter. Besides, a global updatable store, the media
through which data is exchanged between instructions, is assumed to be present in the model. These two properties are the
main bottlenecks to exploit parallelism in the control flow model. The superscalar processors [109] break the original control
flow model in their architectures to gain efficiency. The multiprocessor architectures [42,69] based on the von Neumann
computing model also break the flow of control with the help of explicit language statements/derivatives inserted by com-
pilers or programmers. Despite the involvement of compilers and programmers, it has not been possible to reach to a per-
formance level that was expected to by the early scientists. Nonetheless, the von Neumann computing model is the most
popular model in the world.

Dataflow computing models [105,57,106,69], on the other hand, provide a natural way to initiate the execution of more
than one instruction simultaneously. Unlike control flow models, no program counter or global updatable memory is used
here. The execution is driven by the availability of the operands [94]. As soon as all the operands of an instruction is available,
the instruction is issued, provided that the execution resource is available. In dataflow computing, parallelism is implicit and



Download English Version:

https://daneshyari.com/en/article/523931

Download Persian Version:

https://daneshyari.com/article/523931

Daneshyari.com


https://daneshyari.com/en/article/523931
https://daneshyari.com/article/523931
https://daneshyari.com

