
A Generate-Test-Aggregate parallel programming library
for systematic parallel programming

Yu Liu a,c,⇑, Kento Emoto b, Zhenjiang Hu c,a

a The Graduate University for Advanced Studies, Tokyo, Japan
b Kyushu Institute of Technology, Iizuka, Japan
c National Institute of Informatics, Tokyo, Japan

a r t i c l e i n f o

Article history:
Available online 10 December 2013

Keywords:
High-level parallel programming
Generate-Test-Aggregate algorithm
Program transformation
Program calculation
MapReduce
Functional programming

a b s t r a c t

The Generate-Test-Aggregate (GTA for short) algorithm is modeled following a simple and
straightforward programming pattern, for combinatorial problems. First, generate all can-
didates; second, test and filter out invalid ones; finally, aggregate valid ones to make the
final result. These three processing steps can be specified by three building blocks namely,
generator, tester, and aggregator. Despite the simplicity of algorithm design, implementing
the GTA algorithm naively following the three processing steps, i.e., brute-force, will result
in an exponential-cost computation, and thus it is impractical for processing large data. The
theory of GTA illustrates that if the definitions of generator, tester, and aggregator satisfy
certain conditions, an efficient (usually near-linear cost) MapReduce program can be auto-
matically derived from the GTA algorithm.

The principle of GTA is attractive but how to make it being practically useful, remains as
an important and challenge problem due to the complexity of GTA program transforma-
tions. In this paper, we report on our studying and implementation of a practical GTA
library (written in the functional language Scala) which provides a systematic parallel pro-
gramming approach for big-data analysis with MapReduce. The library provides a simple
functional style programming interface and hides all the internal transformations. With
this library, users can write parallel programs in a sequential manner in terms of the
GTA algorithm, and the efficiency of the generated MapReduce programs is guaranteed sys-
tematically. Therefore, parallel programming for many problems could become no more a
tough job. We demonstrate the usefulness of our GTA library on some interesting problems
involving large data and show that lots of applications can be easily and efficiently solved
by using our library.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Google’s MapReduce [1] is a famous parallel programing model that simplifies the parallel and distributed processing of
large scale data. Despite the simplicity of MapReduce, developing efficient MapReduce programs is still a challenge for cer-
tain optimization problems, because users are required to make particular divide and conquer algorithms that must fit the
execution model of MapReduce.

As an example, consider the well-known 0–1 Knapsack problem: fill a knapsack with items, each of certain value v i and
weight wi, such that the total value of packed items is maximal while adhering to the weight restriction W of the knapsack.
This problem can be formulated as:

0167-8191/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.parco.2013.11.002

⇑ Corresponding author at: National Institute of Informatics, Tokyo, Japan. Tel.: +81 03 4212 2611.
E-mail addresses: yuliu@nii.ac.jp (Y. Liu), emoto@ai.kyutech.ac.jp (K. Emoto), hu@nii.ac.jp (Z. Hu).

Parallel Computing 40 (2014) 116–135

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco

http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2013.11.002&domain=pdf
http://dx.doi.org/10.1016/j.parco.2013.11.002
mailto:yuliu@nii.ac.jp
mailto:emoto@ai.kyutech.ac.jp
mailto:hu@nii.ac.jp
http://dx.doi.org/10.1016/j.parco.2013.11.002
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


maximize
Xn

i¼1

v ixi

subject to
Xn

i¼1

wixi 6W; xi 2 f0;1g

However, designing an efficient MapReduce algorithm for the Knapsack problem is difficult for many programmers because
the above formula does not directly match MapReduce model. Moreover, designing an algorithm for the Knapsack problem
with additional conditions is even more difficult.

The theory of GTA has been proposed [2,3] to remedy this situation. It synthesizes efficient MapReduce programs (i.e.,
parallel and scalable programs) for a general class of problems that can be specified in terms of generate;test and
aggregate in a naive way by first generating all possible solution candidates, keeping those candidates that have passed
a test of certain conditions, and finally selecting the best solution or making a summary of valid solutions with an aggregat-
ing computation. For instance, the Knapsack problem could be specified by a GTA program like this: generate all possible
selections of items, keep those that satisfy the constraint of total weight, and then select the one which has the maximum
sum of values. Note that directly implementing such an algorithm by MapReduce is not practical, because given n items, the
naive program will generate Oð2nÞ possible selections. The theory of GTA gives an algorithmic way to synthesize from such a
naive program to a fully parallelized MapReduce program that has OðnÞ work efficiency.1

The previous work [2,3] described the GTA programming style and the GTA fusion theorems theoretically, but it did not
mention any about the implementation: because of the gap between mathematical concepts and practical programming lan-
guages, it is non-trivial to implement the GTA theory in such a way that it yields both a powerful optimization and a nice
programming interface. Moreover, there has to be more work on GTA in order to identify its real capabilities for practical
parallel programming and to make a sufficient guide for new users.

In this paper we present our implementation of a lightweight GTA library (in Scala [4]) that is a functional programming
platform allowing users to write GTA programs and execute them on local machines or large computer clusters. Our main tech-
nical contribution is two fold. First, we design a generic program interface that allows users to write their programs in a sequen-
tial manner following the GTA programming style, without special requirements for knowing theoretical details of GTA or
parallel programming. The GTA library takes the responsibility of transforming user-specified programs to efficient MapReduce
programs, and executing them on practical MapReduce engines. Second, we demonstrate the usefulness of our GTA library with
many interesting examples and show that lots of problems can be easily and efficiently solved by using our library.

The rest of the paper is organized as follows. After explaining the background in Section 2, we introduce the programming
interface of our GTA library in Section 3. More examples and details about GTA programming are introduced in Section 5.
Section 4 describes the implementation of the library in detail. Then, we describe the experimental results in Section 6.
The related work is discussed in Section 7. Finally, we conclude the paper and highlight the future work in Section 8. The
source code used for our experiments is available online.2

2. Background

In this section we briefly review the concepts of GTA [2,3] as well as its background knowledge, list homomorphism [5–7]
and MapReduce [1]. The notation we use to formally describe algorithms is based on the functional programming language
Haskell [5]. Function application can be written without parentheses, i.e., fa equals f ðaÞ. Functions are curried [5], and func-
tion application is left associative, thus, fab equals ðfaÞb. Function application has higher precedence than operators, so
fa� b = ðfaÞ � b. We use the operator � over functions: by definition, ðf � gÞx ¼ f ðgxÞ and ðf M gÞx ¼ ðfx; gxÞ. The identity ele-
ment of a binary operator � is represented by ı�.

This GTA library is implemented in Scala [4] that is an object-oriented functional language. Basic knowledge of Scala and
generic programming is needed to understand the source code in this paper.

2.1. List homomorphism

A list homomorphism is a special, useful recursive function on lists. Naturally, it is a simple divide-and-conquer parallel
computation [6,7]. List homomorphisms are closely related to parallel computing and have been intensively studied [6–8].

Definition 1 (List homomorphism). A function h is said to be a list homomorphism, if and only if there is a function f, an
associative operator � and the identity element ı� of � such that the following equations hold.

h½ � ¼ ı�
h½a� ¼ f a

hðxþþyÞ ¼ h x� h y:

1 The efficient MapReduce program only produces OðnÞ intermediate data.
2 https://bitbucket.org/inii/gtalib.

Y. Liu et al. / Parallel Computing 40 (2014) 116–135 117

http://https://bitbucket.org/inii/gtalib


Download English Version:

https://daneshyari.com/en/article/524054

Download Persian Version:

https://daneshyari.com/article/524054

Daneshyari.com

https://daneshyari.com/en/article/524054
https://daneshyari.com/article/524054
https://daneshyari.com

