
Static type information to improve the IDE features of hybrid
dynamically and statically typed languages$

Francisco Ortin a,n, Francisco Moreno b, Anton Morant c

a University of Oviedo, Computer Science Department, C/Calvo Sotelo s/n, 33007 Oviedo, Spain
b Alisys Software S.L.U., C/Menendez Valdes 40, 33201 Gijon, Spain
c University of Oxford, Wolfson College, Linton Road, OX26UD Oxford, UK

a r t i c l e i n f o

Article history:
Received 26 October 2012
Received in revised form
7 April 2014
Accepted 21 April 2014
Available online 28 April 2014

Keywords:
Hybrid dynamic and static typing
IDE support
Type inference
Code completion
Separation of concerns
Plug-in
Visual Studio

a b s t r a c t

The flexibility offered by dynamically typed programming languages has been appro-
priately used to develop specific scenarios where dynamic adaptability is an important
issue. This has made some existing statically typed languages gradually incorporate more
dynamic features to their implementations. As a result, there are some programming
languages considered hybrid dynamically and statically typed. However, these languages
do not perform static type inference on a dynamically typed code, lacking those common
features provided when a statically typed code is used. This lack is also present in the
corresponding IDEs that, when a dynamically typed code is used, do not provide the
services offered for static typing. We have customized an IDE for a hybrid language that
statically infers type information of dynamically typed code. By using this type informa-
tion, we show how the IDE can provide a set of appealing services that the existing
approaches do not support, such as compile-time type error detection, code completion,
transition from dynamically to statically typed code (and vice versa), and significant
runtime performance optimizations. We have evaluated the programmer's performance
improvement obtained with our IDE, and compared it with similar approaches.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic languages have turned out to be suitable for
specific scenarios such as rapid prototyping, Web develop-
ment, interactive programming, dynamic aspect-oriented
programming, and any kind of runtime adaptable or adap-
tive software. The main benefit of these languages is the

simplicity they offer to model the dynamicity that is some-
times required to build high context-dependent software.

Taking the Web engineering area as an example, Ruby
[1] has been successfully used together with the Ruby on
Rails framework for creating database-backed Web appli-
cations [2]. This framework has confirmed the simplicity of
implementing the DRY (Don't Repeat Yourself) [3] and the
Convention over Configuration [2] principle with this kind
of languages. Nowadays, JavaScript [4] is being widely
employed to create interactive Web applications with
AJAX [5], while PHP is one of the most popular languages
to develop Web-based views. Python [6] is used for many
different purposes, the Zope application server [7] and the
Django Web application framework [8] being two well-
known examples.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

http://dx.doi.org/10.1016/j.jvlc.2014.04.002
1045-926X/& 2014 Elsevier Ltd. All rights reserved.

☆ This paper has been recommended for acceptance by Shi Kho Chang.
n Corresponding author.
E-mail addresses: ortin@lsi.uniovi.es (F. Ortin),

francisco.moreno@alisys.net (F. Moreno),
anton.morant@comlab.ox.ac.uk (A. Morant).

URL: http://www.di.uniovi.es/�ortin (F. Ortin).

Journal of Visual Languages and Computing 25 (2014) 346–362

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2014.04.002
http://dx.doi.org/10.1016/j.jvlc.2014.04.002
http://dx.doi.org/10.1016/j.jvlc.2014.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.04.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.04.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.04.002&domain=pdf
mailto:ortin@lsi.uniovi.es
mailto:francisco.moreno@alisys.net
mailto:anton.morant@comlab.ox.ac.uk
http://www.di.uniovi.es/~ortin
http://www.di.uniovi.es/~ortin
http://dx.doi.org/10.1016/j.jvlc.2014.04.002


Due to the recent success of dynamic languages, other
statically typed ones such as Java and C# are gradually
incorporating more dynamic features into their platforms.
Taking C# as an example, the .NET platform was initially
released with introspective and low-level dynamic code
generation services. Version 2.0 included dynamic methods
and the CodeDom namespace to generate the structure of
high-level source code documents. The Dynamic Language
Runtime (DLR) adds to the .NET platform a set of services to
facilitate the implementation of dynamic languages. A new
dynamic type has been included in C# 4.0 to support the
dynamically typed code. When a reference is declared as
dynamic, the compiler performs no static type checking,
postponing all the type verifications until runtime [9]. With
this new characteristic, C# 4.0 offers direct access to the
dynamically typed code in IronPython, IronRuby and the
JavaScript code in Silverlight.

Java also seems to follow this trend. The last addition to
support features commonly provided by dynamic languages
has been the Java Specification Request (JSR) 292, partially
included in Java 7. The JSR 292 incorporates the new
invokedynamic opcode to the Java Virtual Machine so
that it can run dynamic languages with a performance level
comparable to that of Java itself [10].

The flexibility of dynamic languages is, however, coun-
teracted by limitations derived from the lack of static type
checking. This deficiency implies two major drawbacks: no
early detection of type errors and less opportunities for
compiler optimizations. Static typing offers the programmer
the detection of type errors at compile time, making it
possible to fix them immediately rather than discovering
them at runtime—when the programmer's efforts might be
aimed at some other task, or even after the program has
been deployed. Moreover, since runtime adaptability of
dynamic languages is mostly implemented with dynamic
type systems, runtime type inspection and checking com-
monly involve a significant performance penalty [11].

Since both static and dynamic typing approximations offer
different benefits, there have been former works to provide
both typing approaches in the same language (see Section 5).
Meijer and Drayton [12] maintain that instead of providing
programmers with a black or white choice between static
and dynamic typing, it could be useful to strive for softer type
systems. Static typing allows earlier detection of program-
ming mistakes, better documentation, more opportunities for
compiler optimizations, and increased runtime performance.
Dynamic typing languages provide a solution to a kind of
computational incompleteness inherent to statically typed
languages, offering, for example, storage of persistent data,
inter-process communication, dynamic program behavior
customization or generative programming [12]. Therefore,
there are situations in programming when one would like to
use dynamic types even in the presence of advanced static
type systems [13]. That is, static typing where possible,
dynamic typing when needed [12].

As proposed by Meijer and Drayton, we break the
programmers' black or white choice between static and
dynamic typing. We have developed a programming
language called StaDyn that provides both type systems
[14]. StaDyn is an extension of C# 3.0, which supports
static and dynamic typing. StaDyn permits the

straightforward development of adaptable software and
rapid prototyping, without sacrificing application robust-
ness and runtime performance. The programmer indicates
whether high flexibility is required (dynamic typing) or
stronger type checking (static) is preferred. It is also
possible to combine both approaches, making parts of an
application more flexible, whereas the rest of the program
maintains its robustness and runtime performance.

The main contribution of this paper is a visual IDE that
takes advantage of the specific features of hybrid statically
and dynamically typed languages, showing how the type
information gathered by the compiler can be used to provide
new features plus others that are commonly offered for
statically typed code only. The StaDyn IDE separates the
dynamism concern [15] facilitating the transition from rapidly
developed prototypes to final robust and efficient applica-
tions, detects many type errors of dynamically typed code at
compile time, provides code completion for dynamically
typed code, and performs significant code optimizations.

The rest of this paper is structured as follows. In Section 2,
the StaDyn IDE is described, emphasizing the new features
added to Visual Studio (VS) in order to support specific
features of hybrid dynamically and statically typed lan-
guages. Section 3 describes the implementation technologies
used to customize the IDE, and its integration with the
StaDyn compiler. In Section 4, we evaluate the programmer's
performance improvement using our IDE, comparing it with
similar approaches. Section 5 discusses related work, and the
conclusions and future work are presented in Section 6.

2. A visual IDE for hybrid statically and dynamically typed
languages

The proposed IDE can be applied to any object-oriented
hybrid statically and dynamically typed language, such as
Visual Basic, Objective-C, Boo, C# 4.0, Groovy 2.0, Fantom
and Cobra. We have selected the StaDyn programming
language, a hybrid static and dynamic typing language
developed for research purposes [14]. StaDyn is an exten-
sion of C# 3.0 [16] that enhances the behavior of its
implicitly typed local references (i.e., its var keyword).
In StaDyn, the type of references can be explicitly declared,
while it is also possible to use the var keyword to declare
implicitly typed references. StaDyn includes this keyword
as a whole new type (it can be used to declare uninitialized
local variables, fields, method parameters and return
types), whereas C# only provides its use in the declaration
of initialized local references. An informal description of
the language can be consulted in [14], while its static and
dynamic semantics is detailed in [17].

In a previous prototype, we developed a first version of
an IDE for the first implementation of the StaDyn language
[18]. This first prototype was implemented as a plug-in
for VS 2008. The one presented in this paper provides
new features for both VS 2010 and 2012, using the Managed
Extensibility Framework (MEF) included in the .NET Frame-
work 4.0 (Section 3). The present IDE provides numerous
new functionalities, representing a new contribution
(Section 5 details the differences).

F. Ortin et al. / Journal of Visual Languages and Computing 25 (2014) 346–362 347



Download English Version:

https://daneshyari.com/en/article/524402

Download Persian Version:

https://daneshyari.com/article/524402

Daneshyari.com

https://daneshyari.com/en/article/524402
https://daneshyari.com/article/524402
https://daneshyari.com

