
Sharing, finding and reusing end-user code for reformatting and
validating data

Christopher Scaffidi n

School of Electrical Engineering and Computer Science, Oregon State University, 1148 Kelley Engineering Center, Oregon State University, Corvallis,

OR 97331-4501, USA

a r t i c l e i n f o

Article history:

Received 16 December 2009

Received in revised form

14 May 2010

Accepted 19 June 2010

Keywords:

End-user programming

End-user software engineering

Data

Reuse

Spreadsheets

a b s t r a c t

To help users with automatically reformatting and validating spreadsheets and other

datasets, prior work introduced a user-extensible data model called ‘‘topes’’ and a

supporting visual programming language. However, no support has existed to date for

users to exchange and reuse topes. This functional gap results in wasteful duplication of

work as users implement topes that other people have already created.

In this paper, a design for a new repository system is presented that supports

sharing and finding of topes for reuse. This repository tightly integrates traditional

keyword-based search with two additional search methods whose usefulness

in repositories of end-user code has gone unexplored to date. The first method is

‘‘search-by-match’’, where a user specifies examples of data, and the repository

retrieves topes that can reformat and validate that data. The second method is

collaborative filtering, which has played a vital role in repositories of non-code artifacts.

The repository’s search functionality was empirically tested on a prototype

repository implementation by simulating queries generated from real user spread-

sheets. This experiment reveals that search-by-match and collaborative filtering greatly

improve the accuracy of search over the traditional keyword-based approach, to a recall

as high as 95%. These results show that search-by-match and collaborative filtering are

useful approaches for helping users to publish, find, and reuse visual programs similar

to topes.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Everyday tasks often require reformatting and validating
short human-readable strings such as phone numbers and
employee ID numbers. For example, an administrative
assistant at a university might gather professors’ contact
information from multiple web pages into a spreadsheet.
Since data on different sites are often formatted differently,
putting values into a consistent format can take some effort.
For instance, some phone numbers might be formatted
like ‘‘(541) 737-5572’’ while others might have a university-
specific format like ‘‘7-5572’’, calling for tedious and

error-prone reformatting into a consistent format. The user
might accidentally make mistakes (e.g., dropping a digit as
in ‘‘7-557’’), and noticing such errors can be difficult when
they are buried amid hundreds or thousands of strings.

To help users with these tasks, prior work introduced a
user-extensible data model called ‘‘topes’’ and a supporting
visual programming language to automate the reformatting
and validation of strings [20–23]. Each tope is an abstraction
that describes how to reformat and validate instances of one
data category. For example, a user might create a tope for
phone numbers. Topes have proven highly reusable across
spreadsheets and even across applications (e.g., reusing a
tope initially created for spreadsheets to validate databases)
[21,23]. Studies have shown that topes can precisely
reformat and validate many kinds of strings [23], that
people can use the toolset’s visual language to quickly and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

1045-926X/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jvlc.2010.06.001

n Tel.: +1 541 737 5572; fax: +1 360 935 7708.

E-mail address: cscaffid@eecs.oregonstate.edu

Journal of Visual Languages and Computing 21 (2010) 230–245

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2010.06.001
mailto:cscaffid@eecs.oregonstate.edu
dx.doi.org/10.1016/j.jvlc.2010.06.001

correctly create topes [21,22], and that users are extremely
satisfied with the toolset and would like to see it deployed
commercially [21,22].

However, no support has been provided to date in
order to help people reuse one another’s topes. That is,
while a user could search through and reuse his or her
own topes, there was no way for people to reuse each
other’s topes. This has been a major limitation because
many people use the same kinds of data, and it is
inefficient for each person to essentially repeat one
another’s work in creating a tope or grammar from
scratch. Moreover, this limitation has been present in
other similar systems, including tools for creating con-
text-free and similar grammars [1,12,14,17].

Outside of grammars, a common approach for tackling
this problem is to provide a repository where end users
can publish, find, and reuse code. Repositories typically
provide mechanisms so users can try out code before
downloading it, and they provide minimalist support for
browsing and search. Specifically, search is generally
based on keywords, tags and categories (e.g., [15,24,25]).
However, the effectiveness of these search approaches is
limited by the well-known ‘‘vocabulary problem’’, in
which different people use widely different labels and
tags for the same things [9].

The objective in the current paper is to present and
evaluate a repository approach for publishing and reusing
topes, with a strong emphasis on discovering effective
search algorithms that are well-suited for finding topes,
context-free grammars, and similar programmatic
descriptions of string data.

Two key insights drive this investigation. The first is
that users probably will not want to reuse a tope until
they have some data that they need to reformat or
validate. For example, a user might want a tope for
reformatting phone numbers because he has some phone
numbers that need to be reformatted. Consequently, it
would be ideal if it were possible to search the tope
repository by specifying examples of the strings to match;
this approach will be referred to as ‘‘search-by-match’’.

The second insight is that although some kinds of data
(such as URLs) could be called ‘‘generic’’ or ‘‘universal’’ as
they are used by virtually everyone, many kinds of data
are specific to industries, organizations, regions, or other
groups of people. For example, the spreadsheets of stock
traders might have stock ticker symbols (‘‘GOOG’’) and
stock exchange symbols (‘‘AMEX’’), while the spread-
sheets of college teachers might have grades (‘‘B+’’) and
course numbers (‘‘COS-101’’). Some kinds of data will
even be specialized within a particular school or other
organization. This insight drives a decentralized reposi-
tory architecture, where users can ‘‘subscribe’’ to specific
repositories that contain topes particular to their organi-
zation or industry. In addition, since some public
repositories might contain topes relevant to more than
one group of users, this insight calls for empirically
evaluating whether a dynamic clustering mechanism such
as collaborative filtering [3] can be used to improve the
accuracy of search results, by matching topes to people
based on what other topes have previously been used by
‘‘similar’’ people.

The central hypothesis is that it is possible to quickly
and accurately find a tope in a repository based on three
pieces of information: keywords, example strings that the
tope should match, and a set of recently used topes. To
evaluate this hypothesis, a prototype tope repository
called ‘‘TopeDepot’’ has been implemented. The reposi-
tory’s search functionality was then empirically tested by
simulating queries generated from real user spreadsheets
whose data might need to be reformatted or validated.

This experiment has shown that the search-by-match
approach is substantially more accurate than simply
searching based on keywords and/or tags as in most
existing end-user code repositories. Moreover, collabora-
tive filtering further increases accuracy, to a recall as high
as 95%. These results suggest that search-by-match and
collaborative filtering will support reuse of topes and
similar grammars at least as well as many existing code
repositories that have already proven successful in
practice.

The remainder of this paper is organized as follows.
Section 2 discusses related work highlighting the need for
mechanisms to facilitate sharing and reuse of grammars
like topes. Section 3 presents the topes data model and
summarizes prior experiments showing that users can
successfully create topes through a visual programming
language and use them to reformat and validate data.
Section 4 discusses the TopeDepot prototype, including its
subscription-based architecture and search interface.
Section 5 specifies the search problem to be solved within
a topes repository and describes three candidate algo-
rithms that each combine aspects of search-by-match
with collaborative filtering. Section 6 presents the
empirical evaluation of the search algorithms, revealing
that search-by-match and collaborative filtering improve
search accuracy over the traditional keyword-based
approach. Section 7 discusses implications for repository
design. Section 8 summarizes the key conclusions.

2. Related work

Topes are the first abstraction to integrate support for
reformatting and validating the short, human-readable
strings of everyday life. Other prior research initiatives
addressed either reformatting or validating alone.

In the area of reformatting, Potluck [11] and Lapis [14]
support simultaneous editing, where a user edits one
string, and the system automatically makes similar
changes to other strings. These edits are instantaneous—

not stored as rules that can be shared and later executed
on other data. Nix’s editing-by-example technique is
similar, and it infers a macro-like program that records
edits and can be replayed later [18], but no mechanism
was provided so users could exchange macros.

In the area of validation, Grammex [12], Lapis [14], and
Apple Data Detectors [17] each enable users to create
context-free or similar grammars using textual program-
ming languages assisted with a visual interface. In
addition, SWYN presents a visual language of colored
boxes and bubbles for creating regular expressions [1].
None of these systems includes a repository where users

C. Scaffidi / Journal of Visual Languages and Computing 21 (2010) 230–245 231

Download English Version:

https://daneshyari.com/en/article/524480

Download Persian Version:

https://daneshyari.com/article/524480

Daneshyari.com

https://daneshyari.com/en/article/524480
https://daneshyari.com/article/524480
https://daneshyari.com

