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a b s t r a c t

Connected component labeling is a key step in a wide-range of applications, such as com-
munity detection in social networks and coherent structure identification in massively-
parallel scientific simulations. There have been several distributed-memory connected
component algorithms described in literature; however, little has been done regarding
their scalability analysis. Theoretical and experimental results are presented for five algo-
rithms: three that are direct implementations of previous approaches, one that is an imple-
mentation of a previous approach that is optimized to reduce communication, and one that
is a novel approach based on graph contraction. Under weak scaling and for certain classes
of graphs, the graph contraction algorithm scales consistently better than the four other
algorithms. Furthermore, it uses significantly less memory than two of the alternative
methods and is of the same order in terms of memory as the other two.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the increasing rate at which scientists are able to gather data, graph analysis applications often require the pro-
cessing power of large, distributed-memory machines. Whether this is due to the size of the problem or the computational
resources required, scientists need efficient algorithms to utilize these large machines. One fundamental algorithm used in
many graph analysis applications is connected component labeling, which can be used to identify and track regions of inter-
est throughout the life of a simulation [1–3] or locating communities in social network graphs [4]. Identifying connected
components is a well understood problem on serial machines and usually employs a breadth/depth first traversal technique
or utilizes the union-find data structure.

Mapping these techniques to work efficiently on distributed-memory machines is not necessarily straight-forward. As a
result, there is a considerable body of research associated with developing parallel connected component labeling algo-
rithms. This research includes development of novel algorithms that are easier to parallelize [5–11], approaches to efficiently
implement connected component labeling algorithms on distributed-memory systems [3,12–16], and studies of their scala-
bility [3,15]. However, despite this prior work, various aspects related to the computational and memory complexity of these
algorithms and their scalability have not been thoroughly analyzed in a unified way. Understanding how these methods per-
form and scale is important due to the wide range of hardware configurations in existing and emerging distributed-memory
parallel architectures.
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In this paper, five algorithms for computing connected component labeling on distributed-memory parallel systems are
investigated. Of these five methods, three are direct implementations of previously published algorithms, one is an imple-
mentation based on a previous method that is optimized to reduce communication overhead, and the last is a novel method,
based on repeatedly contracting the input graph at successive steps of a reduction process. Each of the algorithms is analyzed
from an asymptotic perspective, providing parallel runtimes and memory requirements, assuming an equally distributed
graph. Each of the algorithms is experimentally evaluated with a set of strong and weak scaling experiments, and these
experimental results are compared against the expected theoretical performance. Under weak scaling and for certain classes
of graphs, the graph contraction algorithm introduced in this work scales consistently better than the four other algorithms.
Furthermore, it uses significantly less memory than two of the alternative methods and is of the same order in terms of
memory as the other two.

The rest of the paper is organized as follows. In Section 2, definitions for terms and language used throughout the paper is
provided. In Section 3, two serial algorithms for computing a connected component labeling are presented and analyzed. In
Section 4, the framework for computing connected component labeling on distributed-memory parallel systems is intro-
duced. In Section 5, five distributed-memory connected component algorithms are presented and their runtimes and mem-
ory requirements analyzed. In Section 6, the experimental design is outlined and in Section 7, the results of the experiments
are presented along with a discussion of the findings. Finally, in Section 8, conclusions about this work is presented along
with directions for future research regarding connected component labeling on distributed-memory systems.

2. Definitions and notation

A graph G ¼ ðV ; EÞ consists of a set of vertices V and a set of edges E. The maximum shortest path between any two con-
nected vertices in G will be referred to as dðGÞ, also known as the diameter of G. Note that if d1; d2; . . . ; dn are the diameters of
the subgraphs induced by the connected components of G, then dðGÞ ¼maxðd1; d2; . . . ; dnÞ.

Throughout the paper, it is assumed that the connected component labeling (CCL) is being performed in a distributed-
memory system made up of P processes, connected together by an interconnect network. When a message is passed between
two processes, the cost of starting the communication in hardware is represented by the variable ts and the cost of com-
municating a single word of data by tw. The cost of a unit of local computation time is denoted tc .

When computing the runtime of algorithms, Ts is the time elapsed between the beginning and the end of the algorithm
execution on a serial computer. In the case of a parallel system, the elapsed time is measured from the time that the first
process starts executing until the last process stops executing and is referred to as Tp. A summary of these notations is pre-
sented in Table 1.

A key element to the distributed-memory CCL algorithms is the notion of the component adjacency graph (CAG), which is
used to represent the connected components identified locally by the individual processes. The component adjacency graph
Gc ¼ ðVc; EcÞ, contains a vertex for each connected component that was identified by the various processes based on their
local portion of the graph. Two vertices ui;uj 2 Vc are connected, i.e., ðui;ujÞ 2 Ec , if there is at least one edge in G that con-
nects a vertex in G’s connected component corresponding to ui with a vertex in G’s connected component corresponding to
uj. Section 4 contains a more detailed discussion of the CAG and its construction.

3. Serial algorithms for finding connected-components

There are two algorithms for efficiently finding connected components on a serial machine. The first is based on perform-
ing a breadth-first or depth-first traversal [17]. This algorithm finds the connected components by repeatedly starting a

Table 1
Summary of notations.

Notation Definition

ts Cost of starting a communication
tw Cost of communicating a single word over network
tc Cost of local computation
Ts Serial runtime
Tc Execution time to build CAG
Tc

p Execution time to resolve global connectivity

Tp Parallel runtime
To Parallel overhead

Gc Component adjacency graph (CAG)
Vc Vertices of CAG, representing connected components of G
Ec Edges of CAG, signifying at least one edge in G which connects a vertex from each of the corresponding components

dðGÞ Max shortest path between two connected vertices in G
b Number of adjacent processes
x Relationship between size of input graph and size of CAG
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