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a b s t r a c t

With the increased penetration of intermittent renewable energy sources (RESs) in future grids (FGs),
balancing between supply and demand will become more dependent on demand response (DR) and
energy storage. Thus, FG feasibility studies will need to consider DR for modelling net future demand.
This paper proposes a generic demand model which represents the aggregated effect of DR in terms of a
simplified market model of a FG. The model is based on a unit commitment problem aiming to minimise
the system cost, and is intended specifically for modelling net demand by including the effect of DR in
FG scenario studies. However, the model does not presume any particular market structure. As such, it is
not suitable for modelling of existing electricity markets, but rather its aim is to capture the behaviour
of future electricity markets provided a suitable market structure is adopted. The conventional demand
model in the optimisation formulation is augmented by including the aggregated effect of numerous
users equippedwith rooftop photovoltaic (PV)-battery systems at higher voltage levels, without explicitly
modelling the distribution level. In themodel, the users are aiming tomaximise self-consumption and are
assumed to be price anticipators. As a case study, the effect of the demand model is studied on the load
profile, balancing and loadability of the Australian National Electricity Market in 2020 with the increased
penetration of RESs. The results are compared with the demand model in which users are assumed to be
price takers.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The increased penetration of renewable energy sources (RESs)
in future grids (FGs)will create significant challenges for balancing,
stability and security. FG feasibility studies have demonstrated that
relying on high penetration of diverse RESs is possible assuming
enough flexible generation and/or utility storage are available to
keep the network in balance [1–10]. A preliminary study by the
University of Melbourne Energy Research Institute has proposed a
zero-carbon electrical grid for Australia in 2020 [1]. The University
ofNewSouthWales researchers have analysed the viability of 100%
RES scenarios considering a copper plate model for the Australian
National Electricity Market (NEM) [2,3]. They have suggested 100%
RESs electricity in the NEM, at the current reliability standard,
would be technologically feasible. Also, the least-cost mix of
100% RESs scenario has been determined for the future of the
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NEM. Similarly, the least-cost mix of high penetration of diverse
RESs and conventional generation has been determined for the
future of the PJM, California and New Zealand networks in [4–6],
respectively.

However, these studies have only focused on simple balanc-
ing by using a simplified grid model such as the copper plate
model. On the other hand, the penetration of distributed gener-
ation (DG) has been increasing significantly in recent years, and
greater penetration of small-scale battery storage is anticipated
in power systems [11–17]. In particular, global installed capacity
of rooftop photovoltaic (PV) has increased from approximately 4
GW in 2003 to nearly 128 GW in 2013 mainly due to electricity
price increases, government incentives and also worldwide drop
of PV capital cost [11,12]. In Australia, installed capacity of rooftop
PV (which is mostly installed by residential and commercial cus-
tomers) has grown from approximately 0.8 GW in 2011 to over
4 GW in 2014 [14]. Recent studies have demonstrated that users
equipped with PV-battery systems will reach retail price parity in
the foreseeable future in the USA grids and the NEM [11–13]. In
light of these developments, a question arises how tomodel the ag-
gregated net demand (including DG, storage and demand response
(DR)) to study FG scenarios.
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Nomenclature

Parameters

g ∈ G Supplier g and set of G suppliers.
m ∈ M Load aggregatorm and set of M load aggregators.
h ∈ H Time slot h and set of H slots in the horizon.
i ∈ N Node i in the system and set of N Nodes.
ri ∈ R Region i in the system and set of R regions.
i, j Indices.
α, β Incremental changes for Pmax,m

B,cha and EB,m
loss calculation.

1h Time step interval.
h̃ Time index.
Pmax
g Maximum power limit of supplier g .

Pmin
g Minimum power limit of supplier g .

RUg Ramp-up rate of supplier g .
RDg Ramp-down rate of supplier g .
MUTg Minimum up time interval of supplier g .
MDTg Minimum down time interval of supplier g .
Pmax,m
F Maximum flexible power demand limit of aggrega-

torm.
Pmin,m
F Minimum flexible power demand limit of aggrega-

torm.
Bmax,m
SOC Maximum battery storage state of charge (SOC)

limit of price-responsive users communicating with
aggregator m.

Bmin,m
SOC Minimum battery storage SOC limit of price-

responsive users communicating with aggregator
m.

Pmax,L
i,j Maximum line power limit from node i to node j.

Pmin,L
i,j Minimum line power limit from node i to node j.

Bi,j Susceptance of line between node i and node j.

Variables

sg(h) Binary decision variable on on/off status of supplier
g in slot h.

ug(h) Binary start-up decision variable of supplier g in slot
h.

dg(h) Binary shut-down decision variable of supplier g in
slot h.

Pg(h) Generated active power by supplier g in slot h.
Em Total energy requirement of aggregator m over a

horizon.
Pm
F (h) Aggregated flexible power demand of aggregator m

in slot h.
Pm
L (h) Aggregated inflexible power demand of aggregator

m in slot h.
Pm
U (h) Aggregated power demand of price-responsive

users communicating with aggregator m before
utilising newer demand-side technologies in slot h.

Pm
PV(h) Aggregated PV generation of price-responsive users

communicating with aggregatorm in slot h.
Pm
LF(h) Aggregated net demand of aggregatorm in slot h.

Pres(h) Required reserves in slot h to maintain mismatches
and system stability.

Pm
B (h) Battery storage power for aggregatorm in slot h.

Pmax,m
B,cha Maximum battery charging rate for aggregator m.

This is a limiting variable to ensure that the total
storage capacity is not exceeded.

Bm
SOC(h) Battery storage SOC of price-responsive users com-

municating with aggregatorm in slot h.
EB,m
loss Total battery energy loss of price-responsive users

communicating with aggregatorm over a horizon.

PL
i,j(h) Transferred power by line from node i to node j in

slot h.
P loss,L
i,j (h) Power loss of line between node i and node j in slot

h.
δi(h) Voltage angle at node i in slot h.

Functions

C fix
g (.) Fix cost of supplier g .

C su
g (.) Start-up cost of supplier g .

C sd
g (.) Shut-down cost of supplier g .

Cvar
g (.) Variable cost of supplier g .

ρg(.) Bid of supplier g for generating Pg .

While the effect of DR is neglected inmost of the existing FG fea-
sibility studies [1–5], it is considered in few studiesmainly through
two different ways:

Implicit modelling: DR is considered implicitly, but it is not re-
flected into the loads. For instance in [6], the effect of DR is consid-
ered through improving the capacity credit value for intermittent
RESs (i.e. intermittency of RESs is decreased). However, due to the
significant effect of loads on performance and stability of power
systems, it can be expected that incorporating DR explicitly into
the load models will affect the results of FG feasibility studies sig-
nificantly.

Explicit modelling: In some recent studies [17–22], the aggre-
gated effect of DR is reflected into the conventional demand mod-
els. Most of those studies [19–22], have aimed at including the
effect of DR into the conventional demandmodels assuming exist-
ing market structures. Including the effect of DR into the demand
models requires allowing for the interaction between demand and
supply sides in some ways. This is mainly done through three dif-
ferent approaches. First, in some studies, the supply-side is mod-
elled physically while price-responsive users are not represented
physically [19,20]. In [19], the effect of flexible loads is analysed
on reserve markets. That study presumes the flexible load repre-
sented by a tank model. Also, the reserve market is too simplified
and physical constraints of the electrical grids (e.g. line limits) are
not considered. In [20], flexible demand is represented via a price-
elasticity matrix. The elasticities are a measure of the change in
demand in response to a change in the electricity price, and are typ-
ically obtained from the analysis of historical data. Second, there
is another study that model demand-side technologies physically
while the supply-side is represented through the electricity price
profile [18]. That study assumes users to be price takers, i.e. the ef-
fect of user actions is not considered in the electricity price. This
assumption is usually considered when the amount of information
provided to each user is limited [23]. Third, in few recent stud-
ies, both demand-side technologies and supply-side are modelled
physically [21,22]. This approach necessitates the need for inte-
grated simulations in which both supply and demand sides are
jointly optimised, which can provide more realistic results [21].
In [22], the aggregated chargingmanagement approaches for plug-
in electrical vehicles (PEVs) is integrated into the market clear-
ing process. The market process, however, is too simplified and
physical constraints of the electrical grids are not considered. It
is worth mentioning that the focus of the existing explicit DR
models is often on scheduling/bidding strategies for particular
emerging demand-side technologies, e.g. PV-battery systems [18],
flexible loads [19], HVAC [20,21], and PEVs [22].

Although the above models have proven their merits for the
existing market structures, a generic modelling framework is
still required to model net demand by including the effect of
emerging demand-side technologies for FG studies. A key feature
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