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a b s t r a c t

A novel numerical approach for the approximation of several, widely applied, macroscopic
traffic flow models is presented. A relaxation-type approximation of second-order non-
equilibrium models, written in conservation or balance law form, is considered. Using
the relaxation approximation, the nonlinear equations are transformed to a semi-linear
diagonilizable problem with linear characteristic variables and stiff source terms. To dis-
cretize the resulting relaxation system, low- and high-resolution reconstructions in space
and implicit–explicit Runge–Kutta time integration schemes are considered. The family of
spatial discretizations includes a second-order MUSCL scheme and a fifth-order WENO
scheme, and a detailed formulation of the scheme is presented. Emphasis is given on the
WENO scheme and its performance for solving the different traffic models. To demonstrate
the effectiveness of the proposed approach, extensive numerical tests are performed for the
different models. The computations reported here demonstrate the simplicity and versatil-
ity of relaxation schemes as solvers for macroscopic traffic flow models.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Traffic flow modeling has attracted a rapidly growing interest over the past years, due to the need for optimization of the
usage of existing traffic infrastructure and the design of new structures, the growing economic/environmental cost of traffic
jams, their impact on the quality of life, the need to assess and optimize new driver assistance devices, and (from a scientific
point of view) the existence of complicated non-linear dynamical phenomena associated with traffic flow and the character-
istics of vehicles and drivers’ behavior. The effective modeling of such phenomena, like traffic jams, stop-and-go traffic and
‘‘synchronized’’ congested traffic (Helbing et al., 2002), call for the development of accurate theoretical models which should
reproduce, at least qualitatively, all traffic states with the minimum number of parameters (Helbing, 2001) and the corre-
sponding computational procedures, which should be numerically efficient (in terms of computational time and memory
requirements), accurate and robust, to allow for their use in real-world simulation and optimization scenarios.

Several approaches have been followed over the past years to model the dynamics of traffic flow, the most successful
being cellular automata, microscopic car-following models, gas-kinetic models, and macroscopic traffic models. Comprehen-
sive descriptions of such models can be found, for example, in Helbing (2001); Hoogendoorn and Bovy (2001); Bellomo and
Dogbe (2011); Treiber and Kesting (2013). Macroscopic models consider the traffic as an anisotropic fluid (continuum),
where vehicle dynamics are described in terms of spatial vehicle density and average velocity, as functions of location
and time. Some of the advantages of the macroscopic models are (a) their numerical efficiency (compared to microscopic
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ones), (b) their good agreement with empirical data, (c) their suitability for analytical investigations, (d) the simple treat-
ment of inflows, and (e) the possibility to simulate multi-lane flows by effective one-lane models, we refer, for example,
to Helbing (2001) and Helbing et al. (2002) for thorough discussions.

The main motivation behind this work is the development of a common numerical framework for the macroscopic sim-
ulation of traffic flow networks, transparent to the traffic flow model used (only second-order non-equilibrium traffic flow
models are considered in this work). New models, especially for Adaptive Cruise Control (ACC) and Cooperative Adaptive
Cruise Control (CACC) simulations, may be straightforwardly introduced in this framework and thus, compared and tested
under common conditions. The requirement for the use of different macroscopic models (existing or new developments)
under the same environment, imposes the avoidance of developing new complex numerical solvers. For example, the adop-
tion of a numerical approach based on Godunov-type schemes with (exact or approximate) Riemann solvers would require
the development of new different solver for each new model introduced to the framework, as for example in Coclite et al.
(2005); Garavello and Goatin (2011); Wiens et al. (2013). The second objective is to explore and exploit the advantages
of high-order numerical schemes for space and time discretization, in terms of computational efficiency and accuracy, to
evaluate such schemes and to compare them to lower-order ones for different second-order traffic flow models.

The approach that is followed here includes the adoption of the relaxation approach proposed in Jin and Xin (1995) and is
based on Finite Volume numerical discretizations of a linearized system of differential equations, which renders the meth-
odology independent of the use of Riemann solvers (approximate or not). Within this approach, the differences between the
various traffic flow models are taken into account through the corresponding flux and source term functions, plus their dif-
ferent parameters and upper bounds of the corresponding eigenvalues of the flux’s Jacobian. Different spatial discretization
schemes are incorporated in a common computational framework; a first-order upwind scheme, a second-order Monotone
Upstream-centered Scheme for Conservation Laws (MUSCL) and a fifth-order weighted essentially non-oscillatory (WENO)
scheme are introduced and thoroughly tested. Higher-order implicit–explicit (IMEX) Runge–Kutta (RK) schemes are also
introduced for time discretization. The computational framework is formulated as to have a generalized description of vari-
ables and fluxes and to deal with different traffic flow models and future modifications.

Although low-order finite volume schemes have been successfully applied to macroscopic traffic flow modeling (we refer,
for example, to Helbing and Treiber (1999); Ngoduy et al. (2004); Borges et al. (2008); Ngoduy (2013)), high-order schemes
are able of reducing the numerical dissipation and producing sharper resolution in the numerical solutions. As a result, fewer
discretization points are needed for a desired accuracy and the computation becomes much more efficient, compared to
first-order discretization schemes. Moreover, as it will be demonstrated in following sections, specific features of the solu-
tion for some problems can be obtained only if high-order schemes are implemented. Important traffic flow conditions, such
as shock waves corresponding, for instance, to queue tails, stop-and-go phenomena and cluster formations, should be accu-
rately reproduced by a numerical scheme.

WENO schemes have been applied, mainly, to the Lighthill–Whitham–Richards (LWR), Lighthill and Witham (1955);
Richards (1956), first-order macroscopic flow model and its variants, and by very few research groups so far. The fifth-order
Finite Difference WENO scheme of Jiang and Shu (1996), with Lax–Friedrichs flux splitting for each equation in the system,
was applied in Zhang et al. (2003) to solve the multi-class extension, proposed in Wong and Wong (2002), of the LWR model
(MCLWR) with heterogeneous drivers. An extension to this work was presented in Zhang et al. (2006) to approximate an
MCLWR model, modified to deal with inhomogeneous road conditions; a fifth-order accurate component-wise WENO
scheme was used, which applies the Lax–Friedrichs numerical flux in the Finite Volume method and the flux splitting in
the Finite Difference method. An extension of the work from Zhang et al. (2003) was presented in Zhang et al. (2009), where
better estimation of the minimal characteristic speed of the MCLWR model was provided, thus improving the numerical
results. In Burger et al. (2008) a family of numerical schemes was proposed for multi-species kinematic flows with discon-
tinuous fluxes, including an MCLWR traffic flow model. These first-order schemes can be upgraded to higher-order accuracy
by employing MUSCL-type techniques.

The relaxation approach introduced in Jin and Xin (1995), has found wide application in fluid dynamics problems, we
refer for example to Banda (2005); Banda and Seaid (2005); Chen and Shi (2006); Delis and Katsaounis (2003); Delis and
Katsaounis (2005); Delis and Katsaounis (2004); Delis and Papoglou (2008); Evje and Fjelde (2002); LeVeque and Pelanti
(2001); Li et al. (2002); Seaid (2004, 2006a,b); Banda (2009), among others. The main advantage of such schemes is that nei-
ther Riemann solvers, nor the computation of eigenvalues are needed, which renders this methodology ideal for problems
where an analytic expression for the eigenvalues of the systems’ Jacobian matrix may not be possible or is computationally
tedious to obtain, or the Riemann problems are difficult to approximate (Seaid, 2006c). However, the work on relaxation
schemes for traffic flow problems includes, thus far, very few works on second- or higher-order schemes on the LWR
(and variants) and low-order schemes on standard second-order traffic flow models such as the Aw and Rascle (AR)(Aw
and Rascle, 2000) and the Aw–Rascle–Zhang (ARZ) models (Zhang, 2002).

In Seaid (2006c) a multi-lane LWR model was used as a test model for evaluating a relaxation scheme, developed in
Eulerian and Lagrangian (characteristic) frameworks, using IMEX Runge–Kutta (RK) schemes for time integration. In the
Eulerian framework a second-order MUSCL scheme was developed, and compared to the characteristic scheme and to a sim-
ple upwind one, providing in general the sharpest results. In Herty et al. (2006) relaxation schemes, utilizing a second-order
central WENO scheme for spatial discretization and a third-order IMEX RK method, were used to approximate simple dis-
crete-velocity models of traffic flows, which reduce to the LWR model in the small relaxation limit. A relaxation scheme
for the MCLWR model with heterogeneous drivers was presented in Chen et al. (2009). As an extension to this work, a
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