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a b s t r a c t

For improving the safety and the reliability of wind turbine installations, the earliest and fastest fault
detection and isolation are highly required, since it could be used also for accommodation purpose.
Modern wind turbines consist of several important subsystems, which can be affected by malfunctions
regarding actuators, sensors, and components. From the turbine control point-of-view they are extremely
important since provide the actuation signals, the main functions, as well as the measurements. In this
paper, a fault diagnosis scheme based on the identification of fuzzy models is described, in order to
detect and isolate these faults in the most efficient way, in order also to improve the energy cost, the
production rate, and reduce the operation andmaintenance operations. Fuzzy systems are proposed here
since themodel under investigation is nonlinear, whilst thewind speedmeasurement is uncertain since it
depends on the rotor plane wind turbulence effects. These fuzzy models are described as Takagi–Sugeno
prototypes, whose parameters are estimated from the wind turbine measurements. The fault diagnosis
methodology is thus developed using these fuzzymodels, which are exploited as residual generators. The
wind turbine simulator is finally employed for the validation of the obtained performances.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern industrial processes and controlled plants can exploit
many technical resources comprising for example information
sciences, real-time solutions, advanced diagnosis and control, and
computational intelligence. This paper aims at reporting recent
developments in the emerging areas of technology that find
applications to factory advanced control and diagnosis, such as
wind turbine installations.

The control tools normally used for improving the complete
behaviour of power plants can exploit both advanced control
schemes and complicated hardware solutions (for example, smart
sensors, virtual actuators and processing units). This high com-
plexity degree can increase the failure rate, thus motivating the
requirement of an automatic scheme employed to quickly diag-
nose any abnormal working situations. These remarks raised a
great interest in the issues of Fault Detection and Isolation (FDI)
for dynamic systems, and many model-based strategies were sug-
gested, as described for example in [1–4]. These methods rely on
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themathematical description of the process under diagnosis. How-
ever, the diagnosis principle can be based on a limited number of
approaches, i.e.: the parity space method, the state or output esti-
mation, the Unknown Input Observer (UIO) principle, the Kalman
Filters (KF) tool, the Unknown Input Kalman Filters (UIKF) strategy,
and the parameter identification approach. Moreover, techniques
relying on the artificial intelligence tools were also proposed [5].
Even if several linear and nonlinearmethodologies were proposed,
robust and reliable (in oneword, ‘‘sustainable’’) FDI requires future
researches.

It is worth noting that the accurate detection and isolation of
faults can require a precise mathematical description of the plant
under diagnosis, which can be expressed as state-space or in-
put–output formulation. In this way, after the generation of the
residual signals, their evaluation should guarantee the accurate
fault detection, while avoiding the indication of false alarms gen-
erated by disturbance, measurement errors, and the model-reality
mismatch. However, in actual conditions, the direct design and ap-
plication of these FDI approaches can be difficult, motivated by
the complexity of the mathematical description involved. This un-
avoidable complexity cannot allow the direct use of most of the
linear FDI schemes, thus requiring a viable strategy for the direct
application of the diagnosis schemes to practical examples [3,6].
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Fig. 1. Wind turbine schematic diagram.

With reference to wind turbines, as considered in this work,
many papers considered the model-based FDI problem [7,8]. They
showed that the more accurate the representation is at modelling
the plant dynamics, the better its behaviour will be in diagnosing
abnormal working situations.

This paper proposes the use of the fuzzymodelling and identifi-
cation toolwith application to awind turbine benchmark for deter-
mining a straightforward solution of the FDI task. Two key issues of
the proposed study are remarked. First, themodel complexity does
not imply the need of a complex mathematical description. In fact,
as described here, the fuzzy modelling and identification tool can
be exploited, thus avoiding purely nonlinear equations. Moreover,
the mathematical description of the residual generators is derived
via an identification approach. On the other hand, fuzzy prototypes
as residual generators are designed, rather than purely nonlinear
filters. This aspect is quite important when the designed diagnosis
tool is proposed for real-time solutions. Moreover, the diagnosis
scheme proposed in this study paper will be analysed in compar-
ison with different approaches relying e.g. on banks of UIO/KF, as
described in [1,3].

This work proposes the use of the fuzzy logic theory, since it
seems to be a simple tool able to manage complicated and un-
known situations [9]. In particular, the residual generators ap-
plied to thewind turbine benchmark are derived as Takagi–Sugeno
(TS) fuzzy descriptions [10], whose parameters are estimated via
a system identification strategy. The efficacy of the suggested
approaches are verified on the wind turbine benchmark mea-
surements. Real-time simulations comprising realistic fault and
working situations are used to assess the efficacy of the suggested
methodologies.

It is worth noting that, with respect to the previous work by
one of the same authors [11], this paper extends the results and
improves the efficacy of the proposed solution. On the other hand,
the identification approach, which is extended to the fuzzy frame-
work and applied to thewind turbine data in this study, was devel-
oped by one of the same authors in [12]. Moreover, the design of
the fuzzy estimators, which in this paper is exploited for the fault
isolation task, was described in a paper by the same author [13],
but applied to a diesel engine system.

Finally, the paper has the structure as detailed below. Section 2
addresses the wind turbine model exploited in the work. Section 3
describes the fuzzy modelling and identification tool used for FDI
strategy development. The suggested FDI scheme is considered
in Section 4. The obtained results reported in Section 5 serve to
highlight the efficacy of the fuzzy tool, which is compared alsowith
respect to a different FDI scheme. Section 6 concludes the work by
summarising the main points of the paper and suggesting some
future research issues.

2. Wind turbine simulated model

Thepaper considers a realisticwind turbinewithhorizontal axis
and three blades that move the rotor shaft due to the incoming
wind flow. A gear-box is used for up-scaling the rotational speed of
the power generator. More details of this benchmark wind turbine

are available in [7]. Fig. 1 provides the diagram of this power
plant.

The converter torque τg(t) and the turbine blade pitch angle
βr(t) are the two control inputs used to regulate the rotational
speed ωr(t) and the generated power Pg(t). On the other hand,
ωg(t) represents the generator speed, whilst τg(t) is generator
torque depending on the converter torque reference, τr(t). τaero(t)
is the aerodynamic torque, whose estimate is computed from the
wind speed, v(t). However, this measurement is very uncertain, as
shown e.g. in [7].

The aerodynamic description is provided by Eq. (1):

τaero(t) =
ρ A Cp (βr(t), λ(t)) v3(t)

2ωr(t)
(1)

with the air density ρ, the turbine blade area A, the reference pitch
angle βr(t), and the tip–speed ratio λ(t), described by Eq. (2):

λ(t) =
ωr(t) R
v(t)

(2)

where the rotor radius is R. With reference to Eq. (1), the term
Cp describes the power coefficient that is usually represented by
a two-dimensional map. Since the wind speed measurement v(t)
is uncertain, it is assumed that τaero(t) is affected by an error, which
justifies the proposed approach of Section 3. The proposed scheme
is also able to manage the nonlinearity described by the expres-
sions of Eqs. (1) and (2).

The drive-train is described as a one-body model and the
complete hydraulic pitch system is modelled as a second or-
der transfer function [7]. Under these hypotheses, the overall
continuous-time state-space model of the wind turbine process is
described by Eq. (3):ẋc(t) = fc (xc(t), u(t))

y(t) = xc(t)
(3)

where the available control inputs are represented by the vector
u(t) =


β1mi(t), β2mi(t), β3mi(t), τg(t)

T and the output mea-
surements are described by the vector y(t) = xc(t) =


Pg(t),

ωg mi(t), ωr mi(t)
T
, respectively. These measurements are pro-

vided by two redundant sensor signals, with i = 1, 2. The static
function fc (·) describes the nonlinear relation between inputs and
outputs. As described in Section 3, this nonlinear system will be
approximated using the fuzzy models estimated from N data se-
quences u(k) and y(k), where k = 1, 2, . . . ,N , are the sampling
intervals.

With reference to the available redundant measurements from
the benchmark, ωg mi and ωr mi represent the generator and rotor
speed signals, respectively. βj mi(t) refers to the ith measurement
of the jth blade pitch. The look-up table Cp (β, λ) is selected for
describing a high-fidelitywind turbine, which is the test-rig for the
validation of the proposed approach.

Finally, the measurement errors are described as Gaussian
processes with statistics that represent realistic wind turbine
measurement sensors.

2.1. Fault mode and effect analysis

The benchmark system considered in this paper simulates a
number of realistic faults, described in Table 1, which represent
typical malfunctions of wind turbine installations. More details are
available in [7].

In order to simplify the approach to the FDI task, the links
between the fault situations reported above and the considered
wind turbine measurements were considered and analysed.
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