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a b s t r a c t

To enhance the performance of the k-nearest neighbors approach in forecasting short-term
traffic volume, this paper proposed and tested a two-step approach with the ability of
forecasting multiple steps. In selecting k-nearest neighbors, a time constraint window is
introduced, and then local minima of the distances between the state vectors are ranked
to avoid overlappings among candidates. Moreover, to control extreme values’ undesirable
impact, a novel algorithm with attractive analytical features is developed based on the
principle component. The enhanced KNN method has been evaluated using the field data,
and our comparison analysis shows that it outperformed the competing algorithms in most
cases.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As an indispensable component of intelligent transportation systems, short-term traffic volume forecasting (STTVF) has
received enormous attentions over the past two decades. Consequently, many STTVF algorithms were developed using
different approaches from various perspectives. Specifically, in terms of modeling, these algorithms are either parametric
or non-parametric: the former explicitly and quantitatively formulates the relationship between the input and the output
(the forecasted) via a parameterized function (model), while the latter is fully data driven and explores the implicit relation-
ship between the forecasted data and input data without providing any well-defined function.

Implementing a parametric algorithm typically consists of two basic steps: estimating the parameters and forecasting the
output by inputting new data into the calibrated model. Although a rich family of parametric STTVF algorithms with prom-
ising performances was developed in the literature (Ahmed and Cook, 1979; Levin and Tsao, 1980; Okutani and Stephanedes,
1984; Hamed et al., 1995; Williams et al., 1998; Williams and Hoel, 2003; Stathopoulos and Karlaftis, 2003; Xie et al., 2007),
they inherently face model calibration, validation, and computational challenges, which makes them difficult to be imple-
mented in real-time transportation systems. For example, although good performance of seasonal autoregressive integrated
moving average model (SARIMA) was frequently reported (Williams and Hoel, 2003; Ghosh et al., 2005; Williams et al., 1998;
Chung and Rosalion, 2001), estimating the parameters of SARIMA is quite computationally demanding even in the case of
univariate, as indicated in Smith et al. (2002).
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On the other hand, non-parametric STTVF algorithms are also extensively studied and their good performances are often
reported (Smith and Demetsky, 1997; Zhang et al., 1998). Compared with parametric STTVF algorithms, main advantages of
non-parametric algorithms include: intuitive formulation, totally data-driven and thus free of assumptions on data distribu-
tion, high flexibility and easy extendibility (Clark, 2003). For example, k-nearest neighbor (KNN) algorithms can be easily
extended to handle multivariate by simply adding data from multiple locations into the search space. More importantly,
nonparametric algorithms are theoretically grounded. As an asymptotically optimal forecaster, when applied to a state space
with m members, KNN approach will asymptotically be at least comparable to any mth order parametric model (Smith et al.,
2002). Motivated by this attractive property, there is a steady stream of refining and extending KNN in the literature. This
paper is along this line.

Most existing KNN algorithms are single-step (Smith and Demetsky, 1997; Smith et al., 2002; Davis and Nihan, 1991),
which has two main disadvantages: (i) generating overlapping nearest neighbors when the method is extended to multi-
ple-step forecasting as demonstrated later; (ii) sensitive to noisy neighbors. To remedy these serious limitations, this study
develops an enhanced KNN algorithm (i.e., KNN-LSPC) with the ability of forecasting multiple steps. We have evaluated the
algorithm’s performance using loop detector data. Our analysis shows that the enhanced KNN algorithm outperformed the
competing algorithms in most cases.

Note that for the convenience of discussion, this paper focuses on short-term volume forecasting. However, the algorithm
can be easily adapted for forecasting other traffic flow measures (e.g., speed). The remaining of the paper is organized as
follows. Section 2 defines the STTVF problem, and then introduces KNN; Section 3 presents the enhanced KNN algorithm; Sec-
tion 4 evaluates the enhanced KNN algorithm’s performance; Finally, Section 5 summarizes the main findings and discusses
future research.

2. Background

2.1. Problem description

Without loss of generality, we define STTVF as follows:
For a given traffic volume series {vol(j)(t), t0 6 t 6 tc, 1 6 j 6m}, where t0, tc are the indices of the beginning and the current

time intervals (note that for simplicity, time interval will be shortened as time unless it is otherwise stated), m is the number
of locations (i.e., the number of loop detectors), and vol(j)(t) represents the traffic volume collected from the jth loop detector
at time t, the problem is to forecast volume L steps ahead for the target location (denoted as j*). More specifically, our task is
to forecast the following vector f(t):

f ðtÞ ¼ volðj
�Þðtc þ 1 : tc þ LÞ

with f ðt; iÞ ¼ volðj
�Þðtc þ iÞ;1 6 i 6 L represents its ith element. Note that we use the notation vol(a:b), b > a, a, b 2 Z+ to denote

a sub-time series from time a to time b of a traffic volume time series. For notational simplicity, we denote volðtÞ ¼ volðj
�ÞðtÞ

herein.

2.2. KNN algorithms

Like other data-driven approaches, KNN algorithm’s performance is dependent on the representativeness and extensive-
ness of the data. The fundamental assumption of KNN algorithms is that future states to be forecasted are more or less similar
to a neighborhood of the past. Smith et al. (2002) provided an excellent review on KNN forecasting algorithms.

A typical KNN framework consists of three basic elements: defining the state vector; measuring distance between two
state vectors; and forecasting future state vectors by utilizing a collection of k-nearest neighbors (candidates).

For STTVF, a typical state vector can be defined as:

xðtÞ ¼ ½volðt � 2Þ; volðt � 1Þ; volðtÞ� ð1Þ

The nearness of a state vector to another is commonly measured by the Euclidean distance, according to which neighbors
are ranked and selected. Out of k neighbors that are nearest to the current state vector, future states can be forecasted using
various methods. The simplest forecasting approach is to directly compute the average of the k nearest neighbors, while
more sophisticated approach in the literature generate forecasts by weighting the k nearest neighbors according to their
distances to the current state vector.

For illustration purpose, the KNN algorithms developed in Smith et al. (2002) are summarized below. These KNN
algorithms are also used as part of the benchmark models in evaluating the new algorithm’s performance.

The KNN forecasting algorithms proposed in Smith et al. (2002) were designed to predict one step ahead and its state
vector and forecasted vector at time t are defined as in Eqs. (2) and (3), respectively.

xðtÞ ¼ ½volðt � 2Þ; volðt � 1Þ; volðtÞ;volhistðtÞ;volhistðt þ 1Þ� ð2Þ

f ðtÞ ¼ volðt þ 1Þ ð3Þ
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