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a b s t r a c t

Continuous traffic kinetic models are difficult to solve because of the occurrence of integro-
differential equations in the models. In this paper, we formulate a discrete traffic kinetic
model by extending the cell transmission mechanism, which can capture not only the
number of vehicles, but also the velocity probability distribution. The variation in the
velocity probability distribution is modeled on the basis of vehicle conservation and cell
transmission to avoid integro-differential terms. An example with a discontinuous initial
density is analyzed to demonstrate the validity of the proposed discrete traffic kinetic
model. From the evolution curve of the velocity probability distribution, we can see that
the proposed model can be used to describe the diffusion process of vehicles from a high
density to a low density section.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Following the seminal work of Prigogine, a kinetic theory of traffic flow has been developed that is similar in spirit to the
kinetic theory of gases and results in Boltzmann-type equations. The Prigogine–Herman (P–H) traffic kinetic theory (Prigo-
gine and Herman, 1971) includes a velocity distribution function f(x, v, t), which is introduced and determined by consider-
ing three processes (i.e., interaction, relaxation, and adjustment process) in traffic flow. Munjal and Pahl (1969) reviewed the
hypothesis and assumptions of the P–H model, and validated the slowing-down term in the presence of platoons. However,
among the interaction, relaxation, and adjustment terms in the model, only the interaction term has been derived analyti-
cally. The relaxation term appears to be postulated based on intuitive grounds, and the adjustment term is introduced to
include a follow-the-leader effect in the Boltzmann-type equation. Paveri-Fontana (1975) improved the P–H model by intro-
ducing the joint distribution of the velocity and desired velocity. From the late 1970s to the late 1980s, few studies of traffic
kinetic models were published.

Since the 1990s, however, there has been renewed research interest in traffic kinetic models, which can be divided into
four areas. First, the P–H traffic kinetic model has been further improved. For example, Nelson (1995) improved this model
by analytically deriving speeding-up interactions using correlation and mechanical models. This improvement revised the
phenomenological relaxation term of Prigogine and Herman (1971), which is intuitively modeled and not analytically
derived. Klar and Wegener (1997) employed Nelson’s ideas to construct a kinetic model of vehicular traffic, which takes into
account vehicle length. Helbing (1996) derived a gas-kinetic traffic equation based on the basic laws of the acceleration and
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interaction of vehicles. Helbing and Treiber (1998) proposed a gas-kinetic traffic model to explain hysteretic transition. Hoog-
endoorn and Bovy (2001) introduced the generalized phase-space density to generalize the Paveri-Fontana model and devel-
oped a traffic kinetic model that considers both discrete attributes, including user-class, roadway lane, and destination, and
continuous attributes, including velocity and desired velocity. Nelson (2003) proposed three benchmarks for kinetic models:
the kinetic equation solution should be bimodal at high densities; the corresponding traffic flow model should display ob-
served scattering at high densities; and the first-order Chapman–Enskog solution should be an arguably reasonable improve-
ment on the Lighthill–Whitham model (1955). Ngoduy (2006) developed the gas-kinetic equations with discontinuities for
interrupted traffic flow of weaving sections, and used moment method to obtain the corresponding macroscopic model.

Second, a macroscopic traffic hydrodynamic model has been derived based on the traffic kinetic model. A macroscopic
gas-kinetic-based traffic model with a non-local interaction term was derived from a microscopic model of vehicle dynamics
(e.g., Treiber et al., 1999; Helbing et al., 2001). Some studies show that hydrodynamic models of traffic flow can be obtained
via asymptotic expansions of equilibrium solutions of kinetic equations. For example, Nelson and Sopasakis (1999) used
Chapman–Enskog-type expansions to obtain zero- and first-order model equations of traffic flow, while Sopasakis (2003)
used Hilbert expansions to obtain zero- and first-order models. Mendes and Velasco (2008) used the Grad’s moment method
to generate a distribution function based on the homogenous state solution of the Paveri-Fontana equation to construct a
macroscopic model.

The third research area concerns the development of a general modeling framework describe multiple attributes and
multi-dimensional particle movement (e.g., Hoogendoorn and Bovy, 2001).

The fourth area involves the formulation of discrete traffic kinetic models with the aim of solving the problem of the lack
of an efficient algorithm in continuous traffic kinetic theory because of integro-differential terms. Meng et al. (2008) formu-
lated a discrete lattice Boltzmann model based on traffic kinetic theory, which can capture the metastability and stop-and-go
phenomena of traffic flow. Meng et al. (2008) extended their lattice Boltzmann model for road traffic to model urban traffic
networks. One deficiency of the model is that the simplification of the interaction and relaxation terms as a uniform relax-
ation term toward the local equilibrium velocity distribution has no analytical derivation. Delitala and Tosin (2007) proposed
a kinetic model with discrete velocities for vehicular traffic flow, using the mathematical kinetic theory approach, which was
developed to model biological systems. Bonzani and Mussone (2008) identified the parameters of a discrete traffic kinetic
model using experimental data. Bonzani and Gramani Cumin (2008) applied discrete kinetic theory to model vehicle distri-
bution along different lanes of a spatially homogeneous multilane highway.

This paper contributes to the fourth research area. It proposes a discrete traffic kinetic model that incorporates a lagged
cell-transmission model (LCTM) to overcome the problem of the lack of an efficient algorithm for solving a continuous traffic
kinetic model because of the occurrence of integro-differential terms.

2. Classic P–H traffic kinetic model

The kinetic model of vehicular traffic developed by Prigogine and Herman (1971) describes the space–time evolution of the
velocity distribution. In terms of driver behavior at low density, it can predict the velocity distribution at an arbitrary density.

Prigogine and Herman’s kinetic equation is
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This equation describes the time evolution of the velocity distribution f(v, x, t) of cars on a homogeneous highway at location
x and time t. The terms on the right-hand side of Eq. (1) are given by
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The various symbols have the following meanings. f(x, v, t) denotes the single-vehicle velocity distribution function, such
that f(x, v, t)dxdv is the expected number of vehicles at time t that have a position between x and x + dx and a velocity be-
tween v and v + dv. f0(x, v, t) denotes the desired velocity distribution function. k is the function of density, and �v denotes
the mean velocity of f. The zero-order moment of f(x, v, t), cðx; tÞ ¼

R1
0 f ðx;v ; tÞdv is the vehicular density. The first-order mo-

ment, �vðx; tÞ ¼ 1
cðx;tÞ

R1
0 vf ðx;v ; tÞdv is the mean velocity. P is the possibility of passing, depending on the density c. T is the

relaxation time, which depends on the density c.

3. Lagged cell-transmission model

The Lighthill–Whitham–Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956) is a first-order macro-
scopic traffic flow model. Its basic equation is

S. Lu et al. / Transportation Research Part C 19 (2011) 196–205 197



Download	English	Version:

https://daneshyari.com/en/article/525316

Download	Persian	Version:

https://daneshyari.com/article/525316

Daneshyari.com

https://daneshyari.com/en/article/525316
https://daneshyari.com/article/525316
https://daneshyari.com/

