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CTM divides the network into a collection of links. Each link is characterized by its funda-
Accepted 26 August 2011

mental diagram, which relates link speed to link density. The state of the network is the vec-
tor of link densities. The state is observed through measurements of speed and flow on some
links. Demand is specified by the volume of vehicles entering the network at some links, and
by split ratios according to which vehicles are routed through the network. There is model
uncertainty: the parameters of the fundamental diagram are uncertain. There is uncertainty
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Prediction in the demand around the nominal forecast. Lastly, the measurements are uncertain. The
Cell Transmission Model uncertainty in each model parameter, demand, and measurement is specified by an interval.
Feedback control Given measurements over a time interval [0, t] and a horizon 7 > 0, the algorithm computes
Uncertainty a set of states with the guarantee that the actual state at time (t + 7) will lie in this set, con-

sistent with the given measurements. In standard terminology the algorithm is a state pre-
diction or an estimate accordingly as T > 0 or =0. The flow exiting a link may be controlled by
an open- or closed-loop controller such as a signal or ramp meter. An open-loop controller
does not change the algorithm, indeed it may make the system more predictable by tight-
ening density bounds downstream of the controller. In the feedback case, the value of the
control depends on the estimated state bounds, and the algorithm is extended to compute
the range of possible closed-loop control values. The algorithm is used in a proposed design
of a decision support system for the 1-80 integrated corridor.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Standard control theory provides a useful framework for formulating and answering questions of real time traffic man-
agement. In this framework the evolution of the road network traffic is modeled as a dynamical system,

x(t+1) :f(t,x(t),u(t),v(t)), t>0,
y(t) = h(t, x(t), w(t)),

in which x(t) is the traffic state vector at time t. The evolution of x(t) is affected by both controlled inputs (ramp metering,
signal settings, changeable message signs) denoted by u(t), and uncontrolled inputs or disturbances (demand, events, weath-
er, incidents) denoted by v (t). The vector y(t) of detector measurements (flow, density, speed, incidents) provides informa-
tion about the traffic state according to (1.2), in which w(t) is the measurement ‘noise’. In the framework, the traffic
management strategy is just a feedback function @
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u(t) = &(t,y[0,t)),

which specifies how the control u(t) is selected on the basis of the measurements available up to that time, namely
yI0,e] = {y(s), s < t}.

Suppose we are given the road network model {f, h}, the feedback function @, and a probabilistic characterization of the
uncertainties in the forecast demand, disturbances and measurement noise {v (t), w(t)t > 0}. Then the prediction of the traf-
fic state at a future time is summarized by the probability distribution of the future state, conditioned on the measurements
available at the present time (Kumar and Varaiya, 1986). That is, the prediction of x(t + 7) is the function

P& t+1,t,y[0,1]) = Prob(x(t + 7) = £[y(s),0 < s < 1),

which is the probability density that x(t + ) = &, conditioned on the measurements y[0, t]. The function ¥ summarizes every-
thing one can know about the road network performance under the specified feedback function or management strategy. For
example, from ¥ one can calculate the average performance of the feedback function in terms (say) of the expected delay as
well as the risk in terms (say) of its variance. As another example, from ¥ one can calculate the likelihood or probability of
the event that congestion will develop during [t,t + T]. One can then determine whether a proposed management strategy
provides adequate average performance and acceptable risk, or whether a proposed strategy improves upon the baseline
strategy.

Two difficulties make it virtually impossible to calculate the function Y. The first difficulty is computational. To appre-
ciate it, consider a 20 km long two-directional highway, with detectors every 500 m reporting speed and density every 30 s.
Then y(t) is a 160-dimensional vector. Suppose the freeway is modeled as a nonlinear discrete-space, discrete-time system,
with 500 m links in each direction, with the state as the vector of link densities. Then x(t) is a vector of dimension 80. So ¥ is
the probability distribution of the 80-dimensional vector x(t + ) which depends on the 80 x t-dimensional measurements
y[0,t]. Computing ¥ is at present impossible. However, with sufficient computational resources, one may be able to calculate
more or less satisfactory approximations to ¥, although to our knowledge no one has attempted to do this calculation. Much
more commonly, one resorts to an approximate calculation of the expected value of x(t), conditional on y[0,t], with no at-
tempt to calculate the risk or dispersion of the distribution around this point estimate. As a consequence, one cannot esti-
mate performance measures, such as travel time or delay, which are nonlinear function of the density.

The second difficulty may be more fundamental. The calculation of ¥ assumes that f, g, @ and the probability distribu-
tions of the demand forecast errors, disturbances and measurement errors, are accurately known. This assumption, however,
does not hold in practice. The assumed models and probability distributions will have specification errors which must be
accounted for in the prediction ¥. One possible move that overcomes this difficulty is to parameterize the unknown spec-
ification errors in a (large) parameter vector @, place a prior distribution on @, and augment (1.1) with the additional state
vector O(t), with

Ot+1)=0().
The prediction function is correspondingly augmented:
Y(&0,t+1,t,y[0,t]) =Prob(x(t+7)=¢,0(t+1)=0]Yy(s),0<s<t).

The computation of this function is thereby much more difficult, and makes this standard control theory formulation
more impractical.

Previous work on the traffic state estimation and prediction using macroscopic traffic models consists of variations on the
theme of Kalman Filter and Monte Carlo methods. In (Sun et al., 2003), a piecewise linear replacement of the CTM is intro-
duced and the Mixture Kalman Filter (MKF) is used to estimate the discrete and continuous state of the system. In (Tampére
and Immers, 2007) the Extended Kalman Filter (EKF) framework for freeway traffic state estimation presented in (Wang and
Papageorgiou, 2007) was applied to CTM. The Uncented Kalman Filter (UKF) (Julier et al., 2000), which overcomes some dis-
advantages of EKF, such as the need for linearization and complicated calculations of Jacobians and Hessians, was compared
to EKF in (Hegyi et al., 2006), and it was concluded that their performance was comparable. Particle Filter (PF) approach and
its comparison to UKF is described in (Mihaylova et al., 2007). These stochastic filtering techniques rely on assumptions
about distributions of the inputs (MKF, EKF), or require large number of simulations to get reasonable result from Monte
Carlo methods (UKF, PF): for example, the system with K uncertain inputs and no parametric uncertainty would require a
minimum of 2X simulations to reasonably represent the distribution of the system state.

We propose a different approach for traffic state prediction and estimation, based on set-valued (or bounding) philosophy
(Kurzhanski, 1972, 1989; Milanese et al., 1996), that is computationally feasible. We incorporate all of the probabilistic and
modeling uncertainty in a (large) parameter vector y and rewrite the dynamical system as a deterministic system with an
unknown uncertainty parameter y:

X(t+1) =f(t,x(t), u(t),), (1.3)
y(t) = h(t,x(t),7). (1.4)
We assume that we have prior knowledge that the unknown 7y belongs to a known set I'. Instead of the probability dis-

tribution ¥ we now seek to find sets X(t + 1, t, y[0,t]) such that, consistent with the measurements y[0,t], we can guarantee
that
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