
Metric corrections of the affine camera q

Adrien Bartoli ⇑, Toby Collins, Daniel Pizarro
a ALCoV-ISIT, UMR 6284 CNRS/Université d’Auvergne, Clermont-Ferrand, France

a r t i c l e i n f o

Article history:
Received 19 August 2014
Accepted 2 March 2015
Available online 14 March 2015

Keywords:
Affine camera
Structure-from-motion
Optimal projection

a b s t r a c t

Given a general affine camera, we study the problem of finding the closest metric affine camera, where
the latter is one of the orthographic, weak-perspective and paraperspective projection models. This prob-
lem typically arises in stratified Structure-from-Motion methods such as factorization-based methods.
For each type of metric affine camera, we give a closed-form solution and its implementation through
an algebraic procedure. Using our algebraic procedure, we can then provide a complete analysis of the
problem’s generic ambiguity space. This also gives the means to generate the other solutions if any.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

We study the problems of finding the closest orthographic,
weak-perspective or paraperspective projection to a general affine
camera in the sense of the Frobenius norm. These form three
instances of the metric affine correction problem class, which we
called orthographic affine correction, weak-perspective affine correc-
tion and paraperspective affine correction, respectively. The main
use of metric affine correction is in Structure-from-Motion by fac-
torization [15,11] and alternation [10]. In the factorization algo-
rithm, metric affine correction is the final stage of a three-stage
process. In the first stage, a centered measurement matrix is fac-
tored into a joint camera matrix and a structure matrix. This factor-
ization represents an affine 3D reconstruction and is defined up to a
(3 � 3) matrix representing an affine change of coordinates. In the
second stage, the metric structure of the affine 3D reconstruction
is recovered by computing an affine-to-metric upgrade using the
metric constraints from the camera model (for instance, the two
rows of the orthographic camera must be orthonormal). The metric
constraints are redundant, and can thus only be satisfied approxi-
mately. This means that, with noise, the upgraded camera factor
is not exactly a metric camera factor. In the third stage, metric affine
correction must therefore be performed for each camera in order to
recover the metric cameras from the upgraded affine cameras. [15]
does factorization with the orthographic camera, while [11] does
factorization with the paraperspective camera, but uses a sub-
optimal metric affine correction procedure, which could thus be
replaced by the proposed one. In the alternation algorithm, metric

affine correction is the third stage of an iterative three-stage pro-
cess. The alternation algorithm requires one to provide an initial
estimate of the cameras. In the first stage, the structure is computed
from the current camera estimates by triangulation. In the second
stage, each camera is computed from the current structure estimate
by resection. Both stages amount to solve a set of small linear least
squares problems. The second stage estimates affine cameras, as it
leaves aside the non-linear constraints characterizing each type of
metric camera model. In the third stage, metric affine correction
is thus performed for each camera in order to recover the metric
cameras. These three stages are repeated until convergence is
reached. The third stage is fundamental in the alternation algorithm
for two reasons. The first reason is that because of noise, similarly to
the third stage of the factorization algorithm, the computed general
affine cameras are not exactly metric cameras. The second reason is
probably more important: without the third stage, an alternation
algorithm would converge to an affine, and not to a metric, recon-
struction. The third stage indeed introduces the metric constraints
into the alternation algorithm. [10] does alternation with the
weak-perspective camera, and could be readily extended to the
paraperspective camera with our correction procedure.

Metric affine correction shares strong similarities with
orthonormal Procrustes analysis. Inspired by the derivation of the
optimal solution to orthonormal Procrustes analysis (specifically,
we follow the derivation in [1]) inspired by [8,13], we solve ortho-
graphic affine correction and weak-perspective affine correction by
a simple algebraic procedure, whose derivation is also fairly simple
but does not seem to have appeared in the literature before. We
also solve paraperspective affine correction by a simple algebraic
procedure. Its derivation is however far more involved. We estab-
lish the algebraic procedures and prove their optimality. Our pro-
cedures allow us to provide an analysis of the problem’s generic
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ambiguities. These are generic in the sense that they apply to any
solution algorithm. Our analysis thus determines cases for which
the problem has a unique solution, and cases for which it does
not. For the latter, we provide a characterization of the solution
space1 and a means to generate all solutions. Our results on the solu-
tion ambiguities are summarized in Table 1. Metric affine correction
is a set of constrained polynomial optimization problems, to which
polynomial optimization methods could be applied. This would
however be computationally more expensive by several orders of
magnitude than our analytical solutions and would not reveal the
problems’ intrinsic structure and degenerate cases.

Our input data is an affine projection matrix written as P 2 R2�3

(and the direction of projection in the paraperspective case). Our
goal is to perform metric affine correction on P. For the ortho-
graphic camera, this means finding the camera’s rotation, and for
the weak-perspective and paraperspective cameras, this means
finding the camera’s rotation and scale factor. The rank of P must
be two [5]. A rank of one would mean that all 3D space points would
be projected to a single image line; a rank of zero would mean that
they would be projected to a single image point. Even if these are
not proper projections, the rank of matrix P may drop to one or zero
for near degenerate geometries under the effect of noise. For
instance, a rank of one may happen when viewing an object with
a strong tilt, while a rank of zero may happen when viewing an
object at a distance with a narrow field of view. Analyzing degener-
ate cases thus tells us what may happen in near degenerate cases.
We established that, excluding the case where P vanishes (which
is equivalent to it having a zero rank), the weak-perspective and
paraperspective scale is always uniquely recoverable. However,
for the three metric affine cameras, the rotation is uniquely recover-
able only if P has full rank, otherwise it has an ambiguity in SO2.

We first give our notation and background in Section 2. We then
solve the metric correction problem for the orthographic,
weak-perspective and paraperspective cameras in Sections 3–5
respectively. For each camera model, we first give the correction’s
cost function and pseudo-code. We then derive the correction
procedure based on the Singular Value Decomposition (SVD) and
analyze the correction’s ambiguities. The details of our analysis
of the correction’s ambiguities for the paraperspective camera
are deferred to Appendix A. We finally give experimental results
in Section 6 and conclude in Section 7.

2. Notation and background

2.1. Notation

General notation. We use italics for scalar (such as a and a),
bold fonts for vector (such as v) and typewriter fonts for matrices

(such as A). The entries of a vector or matrix are written as in

A ¼ A1;1 A1;2

A2;1 A2;2

� �
. We use diag to create (block) diagonal matrices.

We use double bar fonts for sets (such as R). We use B to denote
a generic binary set with jBj ¼ 2. We have for instance
f�1;1g � B. We write vector two-norm as in kvk2 and matrix

Frobenius norm as in kAkF . We define a; b½ �� ¼
def a b

b a

� �
and � as

the Hadamard (element-wise) product.
Orthonormal matrices. We use Od for the Lie group of

orthonormal matrices2 and SOd � Od for the Lie group of special
orthonormal matrices, with d 2 f2;3g. For A 2 Od;detðAÞ ¼ �1; for
A 2 SOd;detðAÞ ¼ 1. We thus have Od � SOd � B. Elements of SO2

may be parameterized as cos h � sin h
sin h cos h

� �
for h 2 R. Elements of

O2 may be parameterized as a cos h � sin h
a sin h cos h

� �
for h 2 R and

a 2 f�1;1g. This is equivalent to having b cosl �b sin l
sinl cosl

� �
for

some l 2 R and b 2 f�1;1g. For A 2 O2;detðAÞ ¼ detð�AÞ, and the
variable a is thus required to specify whether A 2 SO2 (for a ¼ 1)
or A 2 O2 n SO2 (for a ¼ �1). For A 2 O3 however,
detðAÞ ¼ �detð�AÞ, and A 2 SO3 can thus be switched to O3 n SO3

by simply negating its entries. We write P2 for the space of (2 � 2)

permutation matrices defined as P2 ¼
def

I; ~I
� �

with ~I ¼def 0 1
1 0

� �
. We

have that P2 � O2 and P2 � B,
Sub-Stiefel matrices. A sub-Stiefel set SSr�c;1 6

r 6 3;1 6 c 6 3, is formed as the set of r � c blocks taken from all
orthonormal matrices in O3. Consequently, the Frobenius norm
of any element of SSr�c is bounded by 1. For instance,
n 2 SS1�1 � R is a scalar such that jnj 6 1 and n 2 SS2�1 � R2�1

is a vector such that knk2 6 1.

2.2. Metric affine camera models

The affine camera is simply defined as a projection which pre-
serves parallelism. The general affine camera is thus represented
by a matrix A 2 R2�3 for the rotational part and a vector t 2 R2�1

for the translational part. More specifically, a point with world
coordinates Q 2 R3�1 is projected to image coordinates q 2 R2�1

as q ¼ AQ þ t. We use metric affine camera to mean an affine cam-
era which satisfies some additional constraints called the metric
constraints. Metric affine cameras are important: they form the
basis of many Shape-from-X methods, such as Photometric Stereo
[17] and Shape-from-Shading [7], to name a few. The metric affine
cameras may be derived from the perspective camera in two ways.
First, by increasing the focal length to infinity while back-tracking
along the principal ray [5]. Second, by approximating perspective
projection to some order [3].

The orthographic camera is the simplest metric affine camera.
An affine camera is orthographic if A ¼ �R with �R 2 SS2�3. In other
words, A must be the leading two rows of a 3D rotation matrix.
Geometrically, it rotates the object’s points and simply projects
them orthographically to the camera’s retina. The weak-perspec-
tive camera is a zeroth order approximation of the perspective
camera. An affine camera is weak-perspective if A ¼ a�R with
a 2 Rþ and �R 2 SS2�3. In other words, A must be the leading two
rows of a 3D rotation matrix up to a positive rescaling.

Table 1
Summary of our results on solution uniqueness. Matrix P 2 R2�3 is a known upgraded
affine projection matrix whose correction into one of the three listed metric affine
camera models is sought. The case rankðPÞ ¼ 2 includes the two sub-cases where the
singular values of P are distinct or equal.

Camera model rankðPÞ ¼ 2 rankðPÞ ¼ 1 rankðPÞ ¼ 0

Orthographic
Rotation Unique SO2 ambiguous Unrecoverable

Weak-perspective
Scale Unique Unique Unique
Rotation Unique SO2 ambiguous Unrecoverable

Paraperspective
Scale Unique Unique Unique
Rotation Unique SO2 ambiguous Unrecoverable

1 A space is a set (a simple collection of objects) with some added structure, such as
a norm.

2 A group is a set associated with an operation called the group law. The set and
group law must satisfy closure and associativity, and there must be an identity
element and an inverse element for each member of the group. For instance, the
group law of Od and SOd is matrix multiplication, the identity element is the identity
matrix in Rd�d and the inverse is element is obtained by matrix transposition.
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