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a b s t r a c t

Motion segmentation and human face clustering are two fundamental problems in computer vision. The state-

of-the-art algorithms employ the subspace clustering scheme when processing the two problems. Among

these algorithms, sparse subspace clustering (SSC) achieves the state-of-the-art clustering performance via

solving a �1 minimization problem and employing the spectral clustering technique for clustering data points

into different subspaces. In this paper, we propose an iterative weighting (reweighted) �1 minimization

framework which largely improves the performance of the traditional �1 minimization framework. The

reweighted �1 minimization framework makes a better approximation to the �0 minimization than tradition �1

minimization framework. Following the reweighted �1 minimization framework, we propose a new subspace

clustering algorithm, namely, reweighted sparse subspace clustering (RSSC). Through an extensive evaluation

on three benchmark datasets, we demonstrate that the proposed RSSC algorithm significantly reduces the

clustering errors over the SSC algorithm while the additional reweighted step has a moderate impact on

the computational cost. The proposed RSSC also achieves lowest clustering errors among recently proposed

algorithms. On the other hand, as majority of the algorithms were evaluated on the Hopkins155 dataset,

which is insufficient of non-rigid motion sequences, the dataset can hardly reflect the ability of the existing

algorithms on processing non-rigid motion segmentation. Therefore, we evaluate the performance of the

proposed RSSC and state-of-the-art algorithms on the Freiburg-Berkeley Motion Segmentation Dataset, which

mainly contains non-rigid motion sequences. The performance of these state-of-the-art algorithms, as well as

RSSC, will drop dramatically on this dataset with mostly non-rigid motion sequences. Though the proposed

RSSC achieves the better performance than other algorithms, the results suggest that novel algorithms that

focus on segmentation of non-rigid motions are still in need.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In many real applications, high-dimensional data in several classes

or categories can be respectively represented by corresponding low-

dimensional subspaces. For example, motion trajectories of multi-

ple rigidly moving objects in a video [1], face images of different

subjects under varying illumination [2] all lie in low-dimensional

subspaces of the ambient high-dimensional space. Subspace clus-

tering refers to the task of separating the high-dimensional data

into multiple low-dimensional subspaces according to their latent

common patterns being recognized. Specifically, for a collection of

{yi}n
i=1

points in R
m, lying in a union of L subspaces, {Sj}L

j=1
of
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dimensions {dj}L
j=1

, while which points belong to which subspaces

are unknown. The goal of subspace clustering is to identify the clus-

tering of data so that points in the same cluster belong to the same

subspace and find the parameters of each subspace. Such a model is an

extension of the single subspace model found in many papers [3,4].

A more detailed definition of subspace clustering problem can be

found in [5].

Subspace clustering has numerous applications in computer vi-

sion and image processing, e.g., motion segmentation [6,7] and face

clustering [8,9]. The motion segmentation problem refers to seg-

menting the motion trajectories of different objects from tracked

points in video sequences which are captured by a static or mov-

ing camera [10,11]. The face clustering problem refers to cluster-

ing the face images of multiple subjects according to their face im-

ages acquired with a fixed pose but varying illumination. Recently,

the subspace clustering problem has drawn attention of researchers

in compressed sensing, which is a hot research area in information

science [12,13].
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1.1. Prior work on subspace clustering

Numerous subspace clustering algorithms have been proposed

in the past [6,9,10,14–29]. According to the mathematical frame-

work they employ, existing subspace clustering algorithms can be

divided into three main categories: algebraic, statistical, and spectral

clustering [9].

The algebraic algorithms solve the subspace clustering problem

by modeling a subspace as a gradient of a polynomial [11,14]. These

methods do not require prior information of each subspace, and can

enforce structural restriction on the subspaces. Shape interaction ma-

trix (SIM) [6] and generalized principal component analysis (GPCA)

[14] are two classical methods which belong to this category. Though

having a lot of advantages, the algebraic algorithms are hard to avoid

exponentially expensive computations due to the polynomial fitting.

Furthermore, these algorithms are generally sensitive to noise and

outliers and unable to resolve the difficulty of clustering points near

the intersection of subspaces, and have exponentially complex com-

putation with respect number and dimensions of subspaces [9,22].

The statistical algorithms probabilistically model each subspace

as a Gaussian distribution, and consider the clustering problem as

an estimation of mixture of Gaussian. Specific algorithms include ag-

glomerative lossy compression (ALC) [10], mixture of probabilistic

PCA (MPPCA) [15], multi-stage learning (MSL) [16], and the robust

method known as RANSAC [17]. These algorithms typically require

prior information of the subspaces, such as the number of subspaces

and their dimensions. The computational complexity of the above

mentioned algorithms is also exponential with respect to the number

of subspaces and their dimensions [9,22].

The spectral clustering algorithms use local information around

each data point to build a similarity between pairs of points. The

clustering of data points is achieved by applying spectral clustering

to the affinity matrix. Local subspace affinity (LSA) [18], spectral lo-

cal best-fit flats (SLBF) [19], locally linear manifold clustering (LLMC)

[20], and spectral curvature clustering (SCC) [21] are methods of this

class. They cannot deal well with points near the intersection of two

subspaces if the neighborhood of this point contains points from dif-

ferent subspaces. Inspired by the emerging field of compressed sens-

ing (CS) [12,13], the sparse subspace clustering (SSC) algorithm [9,22]

solves the clustering problem by seeking a sparse representation of

data points used as a dictionary. Hence, by resolving all the sparse

representations for all data points and constructing an affinity graph,

SSC automatically finds different subspaces as well as their dimen-

sions from a union of subspaces. Finally, the subspace clustering is

performed by spectral clustering [30]. In addition, as �1-norm mini-

mization is convex and needs at most polynomial time in complexity,

SSC deals well with the data. A robust version of SSC to deal with noise

and corruptions or missing observations is also given in [9,22]. Instead

of finding a sparse representation, the low-rank representation (LRR)

algorithm [23,24] poses the subspace clustering problem as finding

a low-rank representation of the data over the data itself. Then, Lu

et al. proposed a method based on least squares regression(LSR) [28]

which takes advantage of data correlation and groups highly corre-

lated data together. The grouping information can be used to construct

an affinity matrix which is block diagonal and can be used for sub-

space clustering through spectral clustering algorithms. Recently, Lin

et al. analyzed the grouping effect deeply and proposed the smooth

representation framework (SMR) [29] which also achieves state-of-

the-art performance in subspace clustering problem. Different from

SSC, the LRR, LSR and SMR algorithms use normalized cuts [31] in the

spectral clustering step.

Currently, SSC, LRR, LSR and SMR achieve state-of-the-art per-

formance on subspace clustering problem than the other meth-

ods [6,10,14–21,25–27]. This can be demonstrated by the clustering

performance of these methods on benchmark datasets such as the

Hopkins155 dataset [7] and Extended Yale B dataset [8]. However, the

performance of these four state-of-the-art algorithms [9,22–24,28,29]

on motion segmentation of non-rigid moving objects is not thor-

oughly revealed as the Hopkins155 dataset [7] has its bias [32]. This

dataset only includes a few non-rigid motion sequences. On the other

hand, the performance of these algorithms on face clustering problem

still has a large space to improve.

1.2. Paper contribution

In our work, we will first theoretically demonstrate the advance-

ment of reweighted �1-norm minimization framework over �1 mini-

mization. From recent work [33–37] in the compressed sensing field,

we speculate that the performance of SSC [9,22] can be largely im-

proved if we use iterative weighting (i.e., reweighted) �1 minimiza-

tion framework instead of �1-norm minimization. The improvements

can be applied into many subspace clustering problems (motion seg-

mentation, face clustering, and face recognition [9,22–24,38]). Our

main contributions are twofold. First, through a series of experiments

on the Hopkins155 dataset [7] and Extended Yale B dataset [8], we

demonstrate that our method largely reduces the clustering errors

with little additional computational cost. Second, we found the lim-

itation of the representation-based methods in subspace clustering,

especially in non-rigid motion segmentation. We test the state-of-

the-art algorithms [9,18,21,24,28,29]] and our proposed RSSC on a

different motion segmentation dataset: the Freiburg-Berkeley Motion

Segmentation Dataset [32,39] (for more details, please see the exper-

iments section). We divide this dataset into two parts: rigid motion

and non-rigid motion. All these algorithms will get good performance

on the part of rigid motions while achieve high clustering errors on

the part of non-rigid motions, though our method will achieve the

lowest clustering error on this dataset.

The paper is organized as follows: Section 2 briefly introduces

the �1 minimization framework and reweighted �1 minimization

framework. Section 3 introduces the SSC algorithm and the proposed

RSSC algorithm. Section 4 presents our experimental results on the

Hopkins155 dataset [7], the Freiburg-Berkeley Motion Segmentation

Dataset [32,39], and Extended Yale B database [8]. Section 5 concludes

this paper and discuss some future work.

2. Reweighted �1 minimization

2.1. The �1 minimization framework

The use of �1 minimization can be traced back to the year 1973

[40]. It is first applied in reflection seismology [40–42]. After that,

the nature of sparsity of the �1 minimization was confirmed and it

began to be used in signal recovery [43,44] and image processing

[45]. The famous LASSO algorithm [46] and Basis Pursuit [47] are just

two of numerous applications of the �1 minimization. Due to its wide

applicability, the �1 regularization is considered the “modern least

squares”. For more details of the progress of the �1 minimization,

please refer to [37].

In mathematics, many problems in signal recovery and image pro-

cessing need to identify the sparsest solution of an underdetermined

linear system. For example, given an m × n matrix A with m � n and

a nonzero vector b ∈ R
m, to find a sparsest solution of Ax = b equals

to solving the �0 minimization problem

(P0) min
x∈Rn

‖x‖0 s.t. Ax = b, (1)

where ‖x‖0 is the number of nonzero components of x. Since the

problem (P0) is a nonconvex and NP hard optimization problem [48],

approximate solutions are considered instead. In the past decade,

several greedy pursuit algorithms have been proposed, such as the

Matching Pursuit (MP) [49] and the Orthogonal Matching Pursuit

(OMP) algorithms [50]. Another pursuit algorithm is the Basis Pursuit
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