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a b s t r a c t

In this paper we present ideas from computational topology, applicable in analysis of point cloud data. In
particular, the point cloud can represent a feature space of a collection of objects such as images or text
documents. Computing persistent homology reveals the global structure of similarities between the data.
Furthermore, we argue that it is essential to incorporate higher-degree relationships between objects.
Finally, we show that new computational topology algorithms expose much better practical performance
compared to standard techniques.

� 2014 Elsevier Inc. All rights reserved.

1. Motivation

The purpose of this paper is to introduce concepts and tech-
niques from computational topology in the context of image
understanding and pattern recognition. We think that using such
methods in conjunction with the standard tools present in these
fields, can give rise to new effective solutions.

Faced with a large collection of documents, including images, it
is useful to have a global view of this dataset. In this paper we
argue that tools of computational topology can be used to capture
topological structure of point-cloud data and that this information
can be useful. In particular, using persistent homology we are able
to capture global, higher-dimensional patterns within a feature
space.

Data mining methods often use graph-theoretical approaches
[15]. Analysing the connected components of the graph of similar-
ities between pairs of objects is a simple example. From a topolog-
ical perspective, such analysis operates on 1-dimensional
complexes (only pairs of documents are considered) and gives
0-dimensional topological information.

Higher dimensional relationships, i.e. relationships between
larger subsets of data, are sometimes used in data-mining. For exam-
ple, the number of triangles (3-cliques) is an important descriptor of
the connectivity of a social or collaborative network [10]. Rather than
finding just the number of such higher-dimensional elements, we
would like to compute their topological structure.

We believe that mining a higher dimensional topological struc-
ture within a set of objects can give an important insight into the
data. For example, [3] shows that data coming from natural images
form a topological Klein bottle.

The original motivation for our project was an application from
the area of text-mining, as described in [21]. The following paper
serves as an extension, putting these techniques in a wider context.
To be specific, we show the applicability of this framework in the
context of computer vision and image understanding. Additionally,
we update some of the information contained in the previous
paper [21], based on recently gained experience.

We intend to accomplish three goals. First, introducing a high-
er-dimensional similarity measure, we show that the point-cloud
can be interpreted as a simplicial complex, with meaningful filtra-
tion values defined on simplices of all dimensions. Such a represen-
tation allows for treatment with topological tools. Second, we
argue that a higher-dimensional analysis, based on topological
tools, can indeed be interesting and relevant. Third, we demon-
strate that using recent algorithmic techniques, much larger data-
sets can now be handled.

2. Input data

By a feature space we mean a vector space, where each coordi-
nate corresponds to the numerical value of a certain feature. Each
possible tuple of features’ values can be represented as a point
(vector) in this space. Depending on the application, these points
may correspond to images, text documents, etc.

In general, our input consists of a set of objects (images, text
documents, etc.). We also choose a certain similarity measure,
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quantifying how related, or similar, objects are. Normally, similar-
ity is a pairwise function. In our methodology, we consider higher-
dimensional relationships, that is the relationships within sets of
arbitrary size. In contrast, standard, graph-theoretical methods
capture only pair-wise relationships, effectively operating on a
one-dimensional structure.

The values of similarity range from 0 (completely unrelated
objects) to 1 (indistinguishable objects). Therefore, in our method
we identify objects with similarity equal to 1.

Importantly, we also define dissimilarity, dsimð�Þ ¼ 1� simð�Þ,
where sim is a similarity measure. Dissimilarity fits conveniently
with the framework of persistent homology. Note that
dissimilarity it is not necessarily a metric, but we do require
dsimðx; xÞ 6 dsimðx; yÞ ¼ dsimðy; xÞ.

3. Computational topology

In this section we give a brief introduction to computational
topology. For a formal introduction see [8]. A paper by Carlson
[3] is an important work, which shows that analysis of higher-
dimensional data can be meaningful. A number of papers dealing
with topological analysis in lower-dimensional spaces exist, but
these techniques are hard or impossible to generalize to higher
dimensions [16]. A recent paper by Zomorodian [20] deals with
building Rips complexes of high dimensional data.

A finite collection of finite sets, S, is an abstract simplicial com-
plex if for every t 2 S and for every s � t we have s 2 S. Every ele-
ment t 2 S is a simplex and its dimension is defined as cardðtÞ � 1.
By Sk we denote the k-skeleton of complex S, i.e. all simplices in
S with dimension 6 k. If s � t and cardðtÞ � cardðsÞ ¼ 1, we say that
s is a face of t and t is a co-face of s. (Co-)boundary is the set of all
(co-)faces of a simplex. A simplex of dimension 0, 1, 2, 3 is respec-
tively: a vertex, an edge, a triangle and a tetrahedron.

We outline the computations performed: Starting from the
point-cloud equipped with a dissimilarity measure we construct a
filtered simplicial complex, which encodes higher dimensional topo-
logical information, and can be viewed as a higher-dimensional
analog of a graph. Then, we compute the persistence diagram which
encapsulates persistent homology on this data. We now proceed to
define and explain these concepts.

3.1. Čech and Rips complexes

A point cloud, can be imagined as a sample of an underlying
space. We reconstruct this space as a union of balls of a certain
radius. (Later we will use persistent homology, so instead of fixing
this radius, it will become a parameter.) There are two standard
constructions, which yield a combinatorial representation of such
a union of balls, in the form of a simplicial complex. Let BxðrÞ
denote a ball centered at x with radius r. For a given point cloud
P, we define the Čech complex:

�CechðrÞ :¼ r# Pj
\
x2r

BxðrÞ – ;
( )

:

Similarly, we define the Rips complex:

RipsðrÞ :¼ fr# Pjmaxa;b2rdða; bÞ < 2rg:

For sufficiently nice spaces, such as Rn with the standard topol-
ogy, Čech complex has the homotopy type of the union of balls. In
particular, it has the same homology [8]. Rips complex, being eas-
ier to compute, is usually used in practice, even though it might
include some spurious topological information. In our setting the
space might be more exotic, depending on the chosen dissimilarity
measure, and in general the Čech property might not hold. Still,
this is a useful intuition.

3.2. Persistent homology

Homology is a mathematical formalism used to define and iden-
tify basic topological features, called holes. Holes are defined for
arbitrary dimensions, and in three ambient dimensions they are
intuitive: 0-dimensional holes are related to the gaps between con-
nected components, 1-dimensional ones can be viewed as tunnels
(like a hole in a donut). 2-dimensional holes are cavities (inside of a
balloon). See [8] for a formal definition of homology. By homology
class we simply mean an individual hole.

Persistent homology describes the changes in homology when a
certain scale parameter is varied. This way it can be viewed as a
multi-scale view of topology. More formally, given a simplicial
complex K and a filtering function g : K ! ½0;1�, persistent homol-
ogy studies homological changes of the sub-level complexes:
Kt ¼ g�1ð½0; t�Þ. Changing t from 0 to 1 induces a sequence of com-
plexes called a filtration. The complex with the filtering function is
called a filtered complex. Importantly, we require that gðaÞ 6 gðBÞ,
whenever a is a face of B, which we call the filtration property. It
implies that for every t 2 R; Kt is a complex, namely a simplex
appears no sooner than its faces in a filtration.

Persistent homology captures the birth and death times of
homology classes of the sub-level complexes, as t changes from 0
to 1. By birth, we mean that a homology class is created; by death,
we mean it either becomes trivial or becomes identical to some
other class born earlier. The persistence, or lifetime of a class, is
the difference between the death and birth times.

Fig. 1 shows three levels of a filtration, built over a point cloud
simpled from a figure eight. At consecutive filtration levels, holes
are created and then killed. We start from a number of connected
components. In the middle level, the connected components
merge, and a small 1-dimensional cycle is formed. This cycle (out-
lined by the red ellipse), however has small persistence, because it
is immediately glued-in as the balls grow. Then two 1-dimensional
cycles are created. If we changed the parameter further, the cycles
would also be glued-in, but they persisted over a large change of
parameter. We can identify three homology classes with relatively
high persistence, namely the unique connected component, which
persists forever, and the two one-dimensional cycles. Clearly, these
homological features correspond to the apparent shape of figure
eight.

An important justification for the usage of persistence is the sta-
bility theorem. Cohen-Steiner et al. [7] proved that putting some
mild assumptions on two filtering functions f and g from K to
½0;1�, the so-called bottleneck distance (dB, see [7]) between the
persistence of K filtered by function f (denoted as HpðK; f Þ) and

Fig. 1. Example of a point cloud, and a union of balls of growing size. A simplicial
complex, called Rips complex is overlaid, being a combinatorial representation of
the union of balls. Persistent homology captures the changes in homology for the
growing radius of balls.
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