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a b s t r a c t

Dealing with high-dimensional data has always been a major problem in the research of pattern recog-
nition and machine learning. Among all the dimensionality reduction techniques, Linear Discriminant
Analysis (LDA) is one of the most popular methods that have been widely used in many classification
applications. But LDA can only utilize labeled samples while neglect the unlabeled samples, which are
abundant and can be easily obtained in the real world. In this paper, we propose a new dimensionality
reduction method by using unlabeled samples to enhance the performance of LDA. The new method first
propagates the label information from labeled set to unlabeled set via a label propagation process, where
the predicted labels of unlabeled samples, called soft labels, can be obtained. It then incorporates the soft
labels into the construction of scatter matrixes to find a transformed matrix for dimensionality reduction.
In this way, the proposed method can preserve more discriminative information, which is preferable
when solving the classification problem. Extensive simulations are conducted on several datasets and
the results show the effectiveness of the proposed method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Dealing with high-dimensional data has always been a major
problem in the research of pattern recognition and machine
learning. Typical applications of these include face recognition,
document categorization, and image retrieval. Finding a low-
dimensional representation of high-dimensional space, namely
dimensionality reduction is thus of great practical importance.
The goal of dimensionality reduction is to reduce the complexity
of input space and to embed high-dimensional space into a low-
dimensional space while keeping most of the desired intrinsic
information [1,2,13,14]. Among all the dimensionality reduction
techniques, Principle Component Analysis (PCA) [3] and Linear Dis-
criminant Analysis [4] are the most popular methods and have
been widely used in many classification applications. The objective
of PCA is to pursue a set of orthogonal basis that can capture the
directions of maximum variance in the dataset for optimal
reconstruction. While the objective of LDA is to find the optimal
projection that maximizes the between-class scatter matrix Sb

while minimizes the within-class scatter matrix Sw in the low-
dimensional subspace. Given that the within-class scatter matrix
is nonsingular, the optimization problem of LDA can be solved by
generalized eigen-value decomposition (GEVD), i.e. to find the d
largest eigenvectors corresponding to the eigenvalues of S�1

w Sb

[27]. However, for many applications where the number of dimen-
sionality is much larger than that of the samples, the within-class
scatter matrix tends to be singular. Hence the optimal projection
matrix may be found incorrect. This is the so-called small sample
problem and many variants of LDA have been proposed to solve
it, which include Regularized LDA [23], Null-space LDA [24], Uncor-
related LDA [25], SRDA [26].

In general, LDA is supervised, which means it requires label
information. Although supervised methods generally outperform
unsupervised methods, a large number of labeled samples are
needed in order to achieve satisfactory results [27]. But in many
cases, labeling large number of samples is time-consuming and
costly. On the other hand, unlabeled samples are abundant and
can be easily obtained in the real world. Thus, semi-supervised
learning methods [5–12,41–45], which incorporate both labeled
and unlabeled samples into learning procedure, have become more
effective than only relying on supervised learning. Many semi-
supervised methods have been proposed in the past few years,
which include Gaussian Fields and Harmonic Functions (GFHF)
[5], Learning with Local and Global Consistency (LLGC) [6],
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Semi-supervised Discriminant Analysis (SDA) [9] and Laplacian
regularized Least Square (LapRLS) [11].

The above methods can be divided into two categories: trans-
ductive method and inductive method. Two well-known transduc-
tive methods are GFHF and LLGC. These methods work in a
transductive way by propagating the label information from
labeled set to unlabeled set. But they cannot predict the class labels
of new-coming samples hence suffering out-of-sample problem. In
contrast, inductive methods, such as SDA and LapRLS can solve
such problem. These methods firstly construct a manifold regular-
ized term to preserve the geometrical structure with both labeled
and unlabeled set [17]. Then, they arm to find a transformed
matrix to perform dimensionality reduction by incorporating the
manifold regularized term into the original objective function of
supervised algorithms. Hence, the new-coming samples can be
projected into a low-dimensional subspace by using such trans-
formed matrix and the out-of-sample problem can be naturally
solved, which is more practical in real-world applications.

In this paper, we propose a new semi-supervised dimensional-
ity reduction method to enhance conventional LDA performance by
incorporating the soft labels into the scatter matrixes. The pro-
posed method first propagates the label information from labeled
set to unlabeled set via label propagation, where the predicted
class labels of unlabeled samples, called soft labels, can be
obtained. It then finds a transformed matrix to perform dimension-
ality reduction by incorporating the soft labels into the scatter
matrixes. The proposed method can be viewed as a unified
framework to extend many existing LDA algorithms to their
semi-supervised versions. Its basic ideas are different from those
semi-supervised algorithms such as SDA and LapRLS. These meth-
ods use the labeled and unlabeled samples in a simple manner to
construct a manifold regularized term and add it to the objective
function of supervised algorithms. But in the proposed algorithm,
by incorporating the soft labels into training, it can well preserve
the probability distribution of samples both in labeled and
unlabeled set hence obtaining a better subspace for dimensionality
reduction. We also analyze our proposed algorithm under a least
square framework. It can be concluded that given a certain class
indicator, the optimization problem of the proposed method can
be equivalent to a weighted least square problem.

The main contribution of this paper is summarized as follows:

(1) We present an effective label propagation procedure, which
is based on a new local reconstruction graph with symmetri-
zation and normalization. The symmetrization can add more
connections of a sample with its neighborhoods and the nor-
malization can handle with the case when the density of
dataset varies dramatically.

(2) The proposed SL-LDA can preserve more discriminative
information in the soft labels of unlabeled samples than
other methods, which is good to the performance for classi-
fication. It can also be easily extended to its kernel version
by using kernel tricks [21,22].

(3) Motivated by the equivalence between LDA and the least
square problem [18–20], we extend this relationship and
further analyze SL-LDA under a weighted least square prob-
lem (W-LS). Based on such relationship, we then propose a
more efficient approach for calculating the optimal solution
of SL-LDA, which is a linear system of equation and can be
performed on large-scale dataset.

This paper is organized as follows: In Section 2, we will present
an effective label propagation procedure with outlier detection and
dealing with noisy labels. In Section 3, we will introduce our soft
label based Linear Discriminant Analysis (SL-LDA) for semi-super-
vised dimensionality reduction. We will also build a close

relationship between SL-LDA and W-LS in this section and propose
a more efficient approach for solving SL-LDA. The simulation
results based on extensive datasets are shown in Section 5 and
the final conclusions are drawn in Section 6.

2. Transductive learning via label propagation

Let X = [Xl, Xu] e RD�(l+u) be the labeled and unlabeled set, where
each sample in Xl is associated with a class label ci, i e [1, 2, . . . , c].
The goal of label propagation is to propagate the label information
of labeled set to the unlabeled set according to the distribution
associated with both labeled and unlabeled set [5–8,39,46],
through which the predicted labels of unlabeled set, called soft
labels can be obtained.

2.1. Graph construction

In label propagation, a similarity matrix must be defined for
evaluating the similarities between any two samples. The similar-
ity matrix can be approximated by a neighborhood graph associ-
ated with weights on the edges. Officially, let bG ¼ ðbV ; bEÞ denote
this graph, where bV is the vertex set of bG representing the training
samples, bE is the edge set of bG associated with a weight matrix
containing the local information between two nearby samples.
There are many strategies to define the weight matrix W, a typical
one is to use Gaussian function as [5,6,39]:

wij ¼ expð�kxi � xjk2
=rÞ xi 2 NkðxjÞ or xj 2 NkðxiÞ; ð1Þ

where Nk(xj) is the k neighborhood set of xj, r is the Gaussian func-
tion variance. However, r is hard to be determined and even a small
variation of r can make the results dramatically different [7]. Wang
and Zhang have proposed another strategy to construct bG by using
the neighborhood information of samples [7]. This strategy assumes
that each sample can be reconstructed by a linear combination of its
neighborhoods [2], i.e. xi �

P
j:xj2NkðxiÞwijxj. It then calculates the

weight matrix by solving a standard quadratic programming (QP)
problem as:

min xi �
X

j:xj2NkðxiÞ
wijxj

������
������

2

F

s:t: wij P 0;
X

j2NkðxiÞ
wij ¼ 1: ð2Þ

The above strategy is empirically better than the Gaussian function,
as the weight matrix can be automatically calculated in a closed
form once the neighborhood size is fixed. In addition, in order to
make a connection to the normalized graph, we symmetrize W as
W (W + WT)/2 or wij (wij + wji)/2. The advantage of this step is
that it considers the node degree of each sample and a sample with
large node degree can connect more neighborhoods. Then similar to

[39], we normalize W as fW ¼ D�1=2WD�1=2 or ~wij ¼ wij=
ffiffiffiffiffiffiffiffiffiffi
diidjj

p
where D is the diagonal matrix satisfying dii ¼

Plþu
j¼1wij. The normal-

ization can strengthen the weights in the low-density region and
weaken the weights in the high density region, which is good for
handling the case that the density of dataset varies dramtically.
Finally, to satisfy the sum-to-one constraint as Eq. (2), the weight

matrix fW is set as fW  fW eD�1 or ~wij  ~wij
Plþu

j¼1 ~wij

.
, where bD is

the diagonal matrix satisfying ~dii ¼
Plþu

j¼1 ~wij. The basic steps for
graph construction can be seen in Table 1.

2.2. Label propagation process

We will then predict the labels of unlabeled samples based on a
label propagation process, through which the soft labels of unla-
beled set can be obtained. Let Y = [y1, y2, . . . , yl+u] e R(c+1)�(l+u) be
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