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a b s t r a c t

Computer vision is hard because of a large variability in lighting, shape, and texture; in addition the
image signal is non-additive due to occlusion. Generative models promised to account for this variability
by accurately modelling the image formation process as a function of latent variables with prior beliefs.
Bayesian posterior inference could then, in principle, explain the observation. While intuitively appealing,
generative models for computer vision have largely failed to deliver on that promise due to the difficulty
of posterior inference. As a result the community has favoured efficient discriminative approaches. We
still believe in the usefulness of generative models in computer vision, but argue that we need to leverage
existing discriminative or even heuristic computer vision methods. We implement this idea in a prin-
cipled way with an informed sampler and in careful experiments demonstrate it on challenging generative
models which contain renderer programs as their components. We concentrate on the problem of invert-
ing an existing graphics rendering engine, an approach that can be understood as ‘‘Inverse Graphics’’. The
informed sampler, using simple discriminative proposals based on existing computer vision technology,
achieves significant improvements of inference.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

A conceptually elegant view on computer vision is to consider a
generative model of the physical image formation process. The
observed image becomes a function of unobserved variables of
interest (for example presence and positions of objects) and nui-
sance variables (for example light sources, shadows). When building
such a generative model, we can think of a scene description h that
produces an image I ¼ GðhÞ using a deterministic rendering engine
G, or more generally, results in a distribution over images, pðIjhÞ.
Given an image observation bI and a prior over scenes pðhÞ we can

then perform Bayesian inference to obtain updated beliefs pðhjbIÞ.
This view was advocated since the late 1970s [24,22,45,33,31,44].

Now, 30 years later, we would argue that the generative
approach has largely failed to deliver on its promise. The few suc-
cesses of the idea have been in limited settings. In the successful
examples, either the generative model was restricted to few
high-level latent variables, e.g. [36], or restricted to a set of image
transformations in a fixed reference frame, e.g. [6], or it modelled
only a limited aspect such as object shape masks [16], or, in the

worst case, the generative model was merely used to generate
training data for a discriminative model [39]. With all its intuitive
appeal, its beauty and simplicity, it is fair to say that the track
record of generative models in computer vision is poor. As a result,
the field of computer vision is now dominated by efficient but
data-hungry discriminative models, the use of empirical risk
minimization for learning, and energy minimization on heuristic
objective functions for inference.

Why did generative models not succeed? There are two key
problems that need to be addressed, the design of an accurate
generative model, and the inference therein. Modern computer
graphic systems that leverage dedicated hardware setups produce
a stunning level of realism with high frame rates. We believe that
these systems will find its way in the design of generative models
and will open up exciting modelling opportunities. This observa-
tion motivates the research question of this paper, the design of
a general inference technique for efficient posterior inference in
accurate computer graphics systems. As such it can be understood
as an instance of Inverse Graphics [5], illustrated in Fig. 1 with one
of our applications.

The key problem in the generative world view is the difficulty of
posterior inference at test-time. This difficulty stems from a num-
ber of reasons: first, the parameter h is typically high-dimensional
and so is the posterior. Second, given h, the image formation process
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realizes complex and dynamic dependency structures, for example
when objects occlude or self-occlude each other. These intrinsic
ambiguities result in multi-modal posterior distributions. Third,
while most renderers are real-time, each simulation of the forward
process is expensive and prevents exhaustive enumeration.

We believe in the usefulness of generative models for computer
vision tasks, but argue that in order to overcome the substantial
inference challenges we have to devise techniques that are general
and allow reuse in several different models and novel scenarios. On
the other hand we want to maintain correctness in terms of the
probabilistic estimates that they produce. One way to improve
on inference efficiency is to leverage existing computer vision fea-
tures and discriminative models in order to aid inference in the
generative model. In this paper, we propose the informed sampler,
a Markov Chain Monte Carlo (MCMC) method with discriminative
proposal distributions. It can be understood as an instance of a
data-driven MCMC method [46], and our aim is to design a method
that is general enough such that it can be applied across different
problems and is not tailored to a particular application.

During sampling, the informed sampler leverages computer
vision features and algorithms to make informed proposals for
the state of latent variables and these proposals are accepted or
rejected based on the generative model. The informed sampler is
simple and easy to implement, but it enables inference in genera-
tive models that were out of reach for current uninformed
samplers. We demonstrate this claim on challenging models that
incorporate rendering engines, object occlusion, ill-posedness,
and multi-modality. We carefully assess convergence statistics
for the samplers to investigate their truthfulness about the proba-
bilistic estimates. In our experiments we use existing computer
vision technology: our informed sampler uses standard his-
togram-of-gradients features (HoG) [12], and the OpenCV library,
[7], to produce informed proposals. Likewise one of our models is
an existing computer vision model, the BlendSCAPE model, a para-
metric model of human bodies [23].

In Section 2, we discuss related work and explain our informed
sampler approach in Section 3. Section 4 presents baseline meth-
ods and experimental setup. Then we present experimental analy-
sis of informed sampler with three diverse problems of estimating
camera extrinsics (Section 5), occlusion reasoning (Section 6) and
estimating body shape (Section 7). We conclude with a discussion
of future work in Section 8.

2. Related work

This work stands at the intersection of computer vision, com-
puter graphics, and machine learning; it builds on previous
approaches we will discuss below.

There is a vast literature on approaches to solve computer
vision applications by means of generative models. We mention
some works that also use an accurate graphics process as genera-
tive model. This includes applications such as indoor scene under-
standing [15], human pose estimation [29], and hand pose
estimation [14]. Most of these works are however interested in
inferring MAP solutions, rather than the full posterior distribution.

Our method is similar in spirit to Data Driven Markov Chain
Monte Carlo (DDMCMC) methods that use a bottom-up approach
to help convergence of MCMC sampling. DDMCMC methods have
been used in image segmentation [43], object recognition [46],
and human pose estimation [29]. The idea of making Markov sam-
plers data dependent is very general, but in the works mentioned
above, lead to highly problem specific implementations, mostly
using approximate likelihood functions. It is due to specialization
on a problem domain, that the proposed samplers are not easily
transferable to new problems. This is what we focus on in our
work: to provide a simple, yet efficient and general inference tech-
nique for problems where an accurate forward process exists.
Because our method is general we believe that it is easy to adapt
to a variety of new models and tasks.

The idea to invert graphics [5] in order to understand scenes
also has roots in the computer graphics community under the term
‘‘inverse rendering’’. The goal of inverse rendering however is to
derive a direct mathematical model for the forward light transport
process and then to analytically invert it. The work of [37] falls in
this category. The authors formulate the light reflection problem as
a convolution, to then understand the inverse light transport prob-
lem as a deconvolution. While this is a very elegant way to pose the
problem, it does require a specification of the inverse process, a
requirement generative modelling approaches try to circumvent.

Our approach can also be viewed as an instance of a probabilis-
tic programming approach. In the recent work of [31], the authors
combine graphics modules in a probabilistic programming lan-
guage to formulate an approximate Bayesian computation.
Inference is then implemented using Metropolis–Hastings (MH)
sampling. This approach is appealing in its generality and elegance,
however we show that for our graphics problems, a plain MH sam-
pling approach is not sufficient to achieve reliable inference and
that our proposed informed sampler can achieve robust conver-
gence in these challenging models. Another piece of work from
[41] is similar to our proposed inference method in that knowledge
about the forward process is learned as ‘‘stochastic inverses’’, then
applied for MCMC sampling in a Bayesian network. In the present
work, we devise an MCMC sampler that we show works in both a
multi-modal problem as well as for inverting an existing piece of
image rendering code. In summary, our method can be understood
in a similar context as the above-mentioned papers, including [31].

Fig. 1. An example ‘‘inverse graphics’’ problem. A graphics engine renders a 3D body mesh and a depth image using an artificial camera. By Inverse Graphics we refer to the
process of estimating the posterior probability over possible bodies given the depth image.
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