
A graph based approach to hierarchical image over-segmentation q

Pavel Kalinin ⇑, Aleksandr Sirota
Department of Computer Science, Voronezh State University, Russia

a r t i c l e i n f o

Article history:
Received 22 July 2013
Accepted 15 September 2014
Available online 6 October 2014

Keywords:
Segmentation
Superpixels
Graph cuts

a b s t r a c t

The problem of image segmentation is formulated in terms of recursive partitioning of segments into
subsegments by optimizing the proposed objective function via graph cuts. Our approach uses a special
normalization of the objective function, which enables the production of a hierarchy of regular
superpixels that adhere to image boundaries. To enforce compactness and visual homogeneity of
segments a regularization strategy is proposed. Experiments on the Berkeley dataset show that the
proposed algorithm is comparable in its performance to the state-of-the-art superpixel methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The goal of image segmentation is to assign to each pixel a label
that corresponds to a class of potential objects. It helps to find a
convenient representation for further analysis by localizing image
objects and boundaries. There are two common approaches to
image segmentation. The first aims at extracting regions belonging
to a given set of possible objects. The second aims at extracting
segments of unknown object classes by grouping pixels that are
similar in color, texture, etc.

The first approach maximizes the probability that each pixel
receives the correct label. The simplest method is to use a sliding
window classifier that estimates the label of each pixel based on
its local neighborhood. More advanced approaches take into
account the coherence (neighboring pixels tend to have similar
labels) [1,2] and semantic context [3]. They often use probabilistic
graphical models, e.g. CRF [4]. In this case, their structure is repre-
sented by a graph, where image pixels are the vertices, and the
edges define the dependencies between pixels. Efficient segmenta-
tion is then possible when the edges help to assign similar labels to
the vertices.

The second approach aims at extracting the most likely image
objects with as few segments as possible. Superpixel algorithms
have become popular for solving this kind of problems. They
partition images into many relatively small segments. Superpixel
segmentation helps to reduce image dimensionality with minimal
loss of information and offers an easy way to leverage long-range
pixels interdependencies. Regularity and ability to adhere to image

boundaries make superpixels a convenient tool for calculating local
image descriptors.

Common requirements to superpixel algorithms are:

1. Performance. Superpixel segmentation is often used as a prepro-
cessing tool. It, therefore, should take less time than is required
for further processing.

2. Consistency. Superpixels boundaries should be consistent with
image objects boundaries.

3. Compactness and regularity. For many applications superpixels
should be of similar size and more or less convex shape. Such
superpixels help to extract better local descriptors and have
fewer neighbors.

2. Related works

Superpixel algorithms can be divided into three main groups:
divisive, agglomerative and discriminative.

The first group [5–7] implements a top-down strategy. Initially,
the whole image is viewed as a single large segment. Then it is
recursively partitioned into subsegments until a stopping criterion
is met. The algorithms of this group usually have more complex
optimality criteria that make them slower, but less sensitive to
noise. For example, the graph cuts and normalized cuts objective
functions depend on the sum of the cut edges. Therefore, there is
no immediate dependency on the values of individual edges. Many
algorithms of this group do not use regional information, such as
pixel color, directly, but instead use information about the similar-
ity of pixels, e. g. probabilities of borders. Another advantage is
their ability to produce a hierarchy of nested segments in one pass.
The superpixel algorithm of Ren and Malik [6] uses spectral graph
partitioning to yield compact and regular superpixels. Two more

http://dx.doi.org/10.1016/j.cviu.2014.09.007
1077-3142/� 2014 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by Lena Gorelick.
⇑ Corresponding author.

E-mail addresses: kalinin_pv@sc.vsu.ru (P. Kalinin), sir@sc.vsu.ru (A. Sirota).

Computer Vision and Image Understanding 130 (2015) 80–86

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate /cviu

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2014.09.007&domain=pdf
http://dx.doi.org/10.1016/j.cviu.2014.09.007
mailto:kalinin_pv@sc.vsu.ru
mailto:sir@sc.vsu.ru
http://dx.doi.org/10.1016/j.cviu.2014.09.007
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


approaches [5,7] use the minimum graph cut algorithm and
dynamic programming to obtain superpixel lattices.

The second group of algorithms [8,9] implements a bottom-
up strategy. Initially, each pixel belongs to a separate segment.
Then the segments are merged until a certain stopping criterion
is met. Image is often represented as a graph where the vertices
denote the segments connected to each other by the graph edges
representing their similarity. Algorithms of this group are less
time consuming thanks to the greedy optimization strategies:
at each stage a pair of segments to be merged is the one con-
nected by an edge with the highest similarity value. However,
when the segments are small, it is hard to estimate their
similarity precisely. Moreover, greedy merging strategies are
highly dependent on the values of individual edges. As a result,
at the earlier stages dissimilar segments may be merged, causing
errors. Therefore, such algorithms are more sensitive to noise.
Like algorithms of the first group, they allow to produce a
hierarchy of superpixels. The algorithm of Felzenszwalb and
Huttenlocher (FH) [8] uses the above ideas to produce segments
that adhere to image boundaries. However, they are often of
irregular size and shape. Entropy Rate Superpixels (ERS) [9]
solves this by introducing an additional balancing term into
the optimized energy.

The algorithms from the third group [10–15] first roughly
assign pixels to clusters, and then iteratively refine them. Unlike
the algorithms of the first two groups they use regional informa-
tion, such as pixel color and intensity, directly. The mean shift
[11] and watershed [14] follow this strategy. However, they do
not produce compact and regular superpixels. SLIC [10] is a more
efficient algorithm based on k-means clustering. TurboPixels [13]
is a geometric-flow based algorithm, and the approach of Veksler
and Boykov [12] is based on graph cuts.

The three groups of algorithms have distinct properties and are
applied in different scenarios. Divisive and agglomerative algo-
rithms produce a hierarchy of segments and can use information
about pixel similarity in the form of probabilities of boundaries
more efficiently. Conversely, the algorithms from the discrimina-
tive group are more efficient in using regional information. It is
important to note, that divisive and discriminative algorithms are
less sensitive to noise, while agglomerative and discriminative
algorithms are faster.

3. The proposed algorithm

In this work we propose a new superpixel algorithm from the
divisive group that uses the ideas similar to [7,16]. Image is repre-
sented by a graph where edges connect neighboring pixels and
determine their similarity. Each image segment is recursively par-
titioned into two subsegments by computing the minimum graph
cut. The graph edges are normalized to make the superpixels
adhere to image boundaries. Additionally, regularization is applied
to make them compact and homogeneous. The algorithm provides
direct control over the number of segments and produces compact
superpixels of regular size and shape.

At every step the largest 4-connected input segment (a seg-
ment is 4-connected, if for each of its pixels there is a pixel at
the top, bottom, right or left, which is part of the segment) is par-
titioned into two 4-connected output segments. The proposed
algorithm creates several competing partitions and selects the
best of them. Each partition is produced in two stages: terminal
placement and segment partitioning by optimization of the objec-
tive function.

Let I be the image vector, and L – the corresponding vector of
pixel labels. The image is represented by a graph G ¼ ðV ; EÞ, with
vertices V denoting the pixels and the edge weights denoting their

pairwise similarity. The graph defines a global energy function,
which is minimized with respect to the labels L:

EðLÞ ¼ k
X
v i2V

Uðlijv iÞ þ
X
ðv i ;v jÞ2E

Wðli; ljjv i;v jÞ; ð1Þ

where k is a constant, and U and W can be defined as follows:

Uðlijv iÞ ¼ � log pðlijv i; IÞ; ð2Þ
Wðli; ljjv i;v jÞ ¼ � log pðli – ljjv i;v j; IÞ½li – lj�: ð3Þ

pðlijv i; IÞ is the probability of label li for pixel v i, pðli – ljjv i; v j; IÞ –
probability that pixels v i and v j have different labels. The choice
of W is limited to some extent by the available optimization
algorithms.

In the following discussion we will focus on the case when there
are two different types of labels (0,1) corresponding to the two
subsegments produced during segment partitioning.

Our approach is based on the following ideas:

1. In [7] only a group of segments can be partitioned in one
step due to the lattice structure requirement. We developed
a new approach that can split the segments individually. It
is based on a new strategy for choosing the terminal
connections that does not have the limitations of [7].

2. We find the optimal segment partitions using the minimum
graph cut algorithm. A special normalization of graph edges
is used to move the superpixel boundaries closer to the
boundaries of the objects in the image.

3. The optimized energy includes a regularization term that
helps to control the trade-off between the segment
compactness and the cut optimality.

4. To provide for the homogeneity of segments, the optimized
energy includes a term that uses pixel color and intensity.

5. To find Wðli; ljjv i;v jÞ using (3) we use a simple classifier (a
neural network) that estimates the probabilities of borders
between pixels.

3.1. Terminal placement

At the terminal placement stage we select several source-sink
pairs. They are used at the second stage to produce several compet-
ing segment partitions. We select the best one of them using the
following optimality measure:

mean cut ¼
P

v i ;v j2EWðli; ljjv i;v jÞ½li – lj�P
v i ;v j2E½li – lj�

: ð4Þ

The best partition has the lowest mean_cut.
For each pair, each terminal (the source and the sink) is con-

nected by an infinite capacity edge to a single pixel vertex. In
the following discussion we also refer to these pixels as terminals.
To generate the first pair of terminals, we select the two farthest
pixels on the segment (Fig. 1a). For the remaining pairs both ter-
minals are chosen uniformly at random from the pixels lying on
the contour. Thus, the positions of the terminals are selected
using the segment shape only, and are independent of the pixel
values.

3.2. Segment partitioning

At this stage we split segments using the terminals found on the
previous stage. To improve boundary adherence, edge values are
normalized by the width of the segment at the corresponding
locations. That is, the two selected terminals (t1; t2) divide the con-
tour in two groups of vertices C1 and C2 (Fig. 1b). The segment
width in vertex v 2 V is defined as follows:

P. Kalinin, A. Sirota / Computer Vision and Image Understanding 130 (2015) 80–86 81



Download	English	Version:

https://daneshyari.com/en/article/525743

Download	Persian	Version:

https://daneshyari.com/article/525743

Daneshyari.com

https://daneshyari.com/en/article/525743
https://daneshyari.com/article/525743
https://daneshyari.com/

