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a b s t r a c t

We present a variational framework for naturally incorporating prior shape knowledge in guidance of
active contours for boundary extraction in images. This framework is especially suitable for images col-
lected outside the visible spectrum, where boundary estimation is difficult due to low contrast, low res-
olution, and presence of noise and clutter. Accordingly, we illustrate this approach using the
segmentation of various objects in synthetic aperture sonar (SAS) images of underwater terrains. We
use elastic shape analysis of planar curves in which the shapes are considered as elements of a quotient
space of an infinite dimensional, non-linear Riemannian manifold. Using geodesic paths under the elastic
Riemannian metric, one computes sample mean and covariances of training shapes in each classes and
derives statistical models for capturing class-specific shape variability. These models are then used as
shape priors in a variational setting to solve for Bayesian estimation of desired contours as follows. In tra-
ditional active contour models curves are driven towards minimum of an energy composed of image and
smoothing terms. We introduce an additional shape term based on shape models of relevant shape clas-
ses. The minimization of this total energy, using iterated gradient-based updates of curves, leads to an
improved segmentation of object boundaries. This is demonstrated using a number of shape classes in
two large SAS image datasets.

Published by Elsevier Inc.

1. Introduction

An object of interest in an image can be characterized to some
extent by the shape of its external boundary. It is therefore impor-
tant to develop procedures for boundary extraction in problems of
detection, tracking, and classification of objects in images. Certain
methods for extraction make use of only the image data itself to
define target boundaries while others additionally assume the
availability of prior knowledge about the shape of the target to
be segmented. A large body of research exists on the former ap-
proach (see for example [1,2] and papers that followed) whereas
the latter is relatively less explored, with a few exceptions [3–5].
As segmentation algorithms become more sophisticated, they are
tested in more difficult imaging environments of real-world sce-
narios where images do not have enough contrast to provide crisp,
clear boundaries. One example of this scenario is when images are
collected in a spectrum outside the visible domain. Here, images

are typically of low contrast and contain excessive clutter, causing
standard boundary extraction algorithms to fail. For instance, Fig. 8
shows some examples of synthetic aperture sonar (SAS) images
that are difficult to segment automatically. Thus, it is of increasing
importance that boundary extraction algorithms make use of prior
knowledge about expected targets in order to help compensate for
the bad data quality. Our goal is to present a method for represent-
ing, modeling, and incorporating prior information about shapes of
closed curves in a boundary extraction algorithm and demonstrate
its effectiveness in imaging scenarios outside the visual spectrum.
We clarify that our goal is not to develop a general purpose image
segmentation algorithm, but to use the contextual knowledge to
determine expected object shapes and to use this information in
boundary extraction. Here, one must provide prior knowledge in
the form of training shapes that are representative of the target
boundary desired to be segmented.

One particular example of interest to us is boundary extraction
in synthetic aperture sonar (SAS) imagery in military undersea
reconnaissance, although our procedure can be applied to a wide
variety of applications such as medical diagnosis and infrared sur-
veillance. The task of automatically extracting object contours in
SAS imagery is challenging due to the following reasons.
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1. These images are typically low contrast due to a low signal-
to-noise ratio (SNR), i.e. the background and target can be
quite similar in intensity levels and boundaries are not
clear. (By SNR we mean the ratio of average target pixel
intensity to average background pixel intensity.)

2. The SAS imagery used here comes from a side scan sonar,
where an autonomous underwater vehicle travels in a
straight line and sends out a series of sound chirps from
its side. Since one target side faces away from the sonar,
the target is partially occluded in sound shadow, which
introduces missing boundaries and causes the shape of a
highlighted target to vary widely with its aspect angle.

3. The resolution of sonar images is often much lower than
those obtained in the visible spectrum, resulting in rela-
tively fewer pixels on targets.

4. Underwater imaging environments normally contain high
speckle clutter due to rough seabed backgrounds.

These factors make it difficult to perform boundary extractions
on SAS imagery using standard active contour and other boundary
segmentation methods, and methods that can incorporate addi-
tional information are required. We will utilize manually-extracted
boundaries of different known classes of sea-floor targets imaged
via SAS as prior knowledge to the algorithm.

1.1. Past and present ideas in boundary extraction

The term active contour, or snake, refers to a dynamic curve that
evolves to capture desired features in an image domain. There are
two broad categories of active contour methods: parametric and
geometric, each with their own set of advantages and drawbacks.
Parametric active contours are explicitly defined parameterized
curves, and the forces that drive the snake evolution are applied
to the curve directly; whereas, geometric active contours are
implicitly defined as zero level sets of higher-dimensional func-
tions across the entire image domain. Here, we provide a brief sur-
vey of past and present work in these two areas.

1.1.1. Parametric active contours
Many of the past and current parametric snake models are

based on the ideas presented in the seminal paper of Kass et al.
[6]. They define an energy function comprised of two parts, exter-
nal and internal energy, whereby an explicitly parameterized
snake evolves towards local minima corresponding to desirable
solutions (edges, boundaries, etc.). The external energy is made
from the pixel intensity values across the image domain, and the
internal energy is designed as a regularization term that applies
a smoothing force to maintain continuity of the curve itself. In or-
der to allow for a more general initialization, Cohen and Cohen in
[7] introduce an internal balloon force derived from the finite ele-
ment method that instead of drawing a snake inward towards a
boundary edge, it inflates the snake outward. Xu and Prince in
[8] introduce a new type of external force called Gradient Vector
Flow (GVF), which is not based on the negative gradient of an en-
ergy function, but rather it diffuses the vectors from the Gaussian
smoothed image gradient by solving a pair of decoupled linear
PDE’s. Li et al. [9] propose an Edge Preserving GVF (EPGVF) that
maintains the benefits of GVF while improving the ability to detect
weak edges. It also allows for topological change in a parametric
active contour setting, a quality that arises much more naturally
in geometric models.

1.1.2. Geometric active contours
A geometric active contour is described by a curve evolution

equation that does not depend on the explicit parametrization of
the contour but rather on the intrinsic geometric properties or

quantities of the contour, such as curvature and normal vector, that
are independent of parametrization. Most geometric active contour
methods stem from the ideas presented in Osher and Sethian’s
work on front propagation with curvature-dependent speed [10].
They represent a front, or an interface, as the zero level set of a
higher-dimensional signed distance function called the level-set
function. The front is evolved according to hyperbolic conservation
laws acting on the level set function itself, where the velocity field
is defined by its curvature (geometric term) as well as possible
external flows (advection term). A desirable property of this meth-
od is that it can naturally handle topological change, i.e. splitting
and merging, of the evolving front with no additional effort. Malla-
di et al. [2] and Caselles et al. [11] independently applied Osher and
Sethian’s ideas to the problem of boundary extraction in images in
order to make use of topological change in the segmentation of not
just one but potentially many object boundaries. In addition to any
curvature smoothing term, Malladi et al. define a speed function
based on image data to be applied to the propagating front, which
provides a halting criterion at potential boundaries. Caselles et al.
use a similar approach but consider the advection term to drive ac-
tive contours towards minimal distance curves or geodesics in a
Riemannian space derived from the image, a popular method
called ‘‘geodesic active contours.’’ Kichenassamy et al. [12] modify
slightly the work defined in [2,11] by deriving their model from ba-
sic differential geometric principles. Common to all geometric ac-
tive contour models is the notion of evolution according to
Euclidean curve shortening, which defines the gradient direction
in which the Euclidean perimeter shrinks the fastest. This velocity
vector is determined by the geometric heat equation and is equiv-
alent to the inward normal direction scaled by the signed curva-
ture [13,14]. Such an evolution is a very desirable component of
a snake model because it simultaneously shrinks the curve and
smooths it without inducing any cross-overs. Li et al. [15] also de-
scribe a level set approach for image segmentation.

1.2. Active contours with shape priors

In many applications the image information alone is seldom en-
ough to drive the contour towards the desired target boundary,
and it is necessary to incorporate prior knowledge about the type
of shape. Sonar imagery is a good example of a scenario where
without an energy term to help guide the snake to a set of high
probability prior shapes, background clutter, occlusion, and overall
inhomogeneity of the target intensity can give rise to false segmen-
tation results. For this reason, many current methods employ a
Bayesian framework to apply a shape prior, an energy term based
on the statistics of a set of training shapes, to the active contour
model. The nature of the shape prior depends on the type of active
contour model in use, parametric or geometric. In a parametric
model, the shape prior is a statistical model on closed or open con-
tours in R2; whereas, in a geometric model, the shape prior is a sta-
tistical model on level-set functions, i.e. surfaces, in R3 or higher.

Past Bayesian methods have been applied almost exclusively to
geometric models where most efforts follow the ideas presented in
Leventon et al. [16]. Here, a set of signed distance functions are ob-
tained from previously known training shapes, and an arithmetic
mean is computed. PCA is then performed in L2 space to create a
multivariate Gaussian distribution on the subspace defined by
the top n principal components. Fang and Chan in [17] incorporate
such a Gaussian density for use as a shape prior in a geodesic active
contour framework based on [11]. Cremers et al. in [3] and Rousson
and Cremers in [18] improve on [16] by applying a kernel density
estimation technique to model general distributions of level-set
functions beyond that of just Gaussian. They modify the
Mumford–Shah based segmentation in [1] to include the shape
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