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a b s t r a c t

In this paper, we propose a novel stereo method for registering foreground objects in a pair of thermal
and visible videos of close-range scenes. In our stereo matching, we use Local Self-Similarity (LSS) as
similarity metric between thermal and visible images. In order to accurately assign disparities to depth
discontinuities and occluded Region Of Interest (ROI), we have integrated color and motion cues as soft
constraints in an energy minimization framework. The optimal disparity map is approximated for image
ROIs using a Belief Propagation (BP) algorithm. We tested our registration method on several challenging
close-range indoor video frames of multiple people at different depths, with different clothing, and
different poses. We show that our global optimization algorithm significantly outperforms the existing
state-of-the art method, especially for disparity assignment of occluded people at different depth in
close-range surveillance scenes and for relatively large camera baseline.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the recent years, by reduction in the price of infrared sensors,
there has been a growing interest in visual surveillance using ther-
mal–visible imaging system for civilian applications. The advanta-
ges of jointly using a thermal camera with a visible camera have
been discussed comprehensively in [1–4]. Combining visible and
infrared information allows to better handling shadow, reflection,
noise, misdetection, and missing information. The combined data
enables better detection and tracking of people. Moreover, for hu-
man activity analysis, the joint use of thermal and visible data en-
ables us to better detect and segment the regions related to the
object that people may carry based on their temperature differ-
ences compared to the human body.

A fundamental issue associated to data fusion of close-range
thermal–visible imaging is accurately registering corresponding
information and features of images with dramatic visual differ-
ences. For a close-range scene, matching corresponding features
in a pair of visible and thermal videos is much more difficult than
for a long-range scene. People might be in very different sizes due
to their distances to the camera, in different poses, and at different
levels of occlusion. They might have colorful/textured clothes that
are visible in color images, but not in thermal images. On the other
hand, there might be some textures observable in thermal images
caused by the amount of emitted energy from different parts of the

human body that are not visible in a color image. Due to the high
differences between thermal and visible image characteristics,
finding correspondence for entire scene is very challenging. Instead
registration is focused on the foreground ROIs.

The dense two-frame stereo correspondence is the only viable
approach for registering possibly occluded objects at mutiple
depths in the scene. Stereo matching is a well-studied subject for
unimodal imaging system. An extensive taxonomy of two-frame
stereo correspondence algorithms is described in [5]. However, this
subject is new for multimodal visual surveillance applications. We
summarize the problems associated to multimodal dense stereo as
follows:

� Dissimilar patterns. This problem is specific to multimodal dense
stereo. It is caused by the different types of image modalities.
The corresponding regions in two images might be differently
textured or one textured while the corresponding one is
homogenous.
� Depth discontinuities. This difficulty is caused by segmentation

results that contain two or more merged objects at different
depths in the scene. In this case, correct disparities might be sig-
nificantly different between neighboring pixels located on the
depth boundaries.
� Occlusions. Some pixels in one view might be occluded in the

other view. Therefore they should not be matched with pixels
in the other view.

The main motivation of our proposed algorithm is the limitation
of current approaches for registering occluded people ROIs. In this
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paper we present a global optimization algorithm for partial image
ROI registration. we formulate a multimodal stereo matching in a
Markov Random Fields (MRFs) framework using color and motion
information as smoothness assumptions in order to elegantly han-
dle depth discontinuities, occlusions, and non-informative pixels
caused by dissimilar patterns (corresponding pixels that do not
contain similar visual information). Applying global optimization
to multimodal stereo problem is challenging since most similarity
measures, which are used for color images, are not viable for mul-
timodal images. We integrate LSS as similarity measure in our glo-
bal optimization algorithm.

The rest of the paper is organized as follows: The overview of
the current multimodal registration approaches that gives insight
about the limitations of exisiting methods is presented in Section
2. In Section 3, we describe the strengths of LSS as a viable image
feature for matching thermal and visible images. In Section 4, the
overview of our registration system is presented, and, in Section
5 each step of our algorithm is described in details. Our experiment
is presented in Section 6 and demonstrate that our method is effi-
cient for video surveillance applications and outperforms the cur-
rent state-of-the-art method. Finally, in Section 7, we conclude
this paper by describing the advantages and limitations of our
algorithms.

2. Related works

In the thermal–visible video surveillance research context, the
majority of the image registration approaches are related to global
image registration that globally transform a reference image on the
second image. Krotosky and Trivedi give a comparative survey of
multimodal registration approaches [6]. Global transformation ap-
proaches, either extract low-level image features such as edge fea-
tures [7], or temporal–spatial features such as object trajectories
[8,9] to estimate a transformation matrix that transforms one im-
age on another with the assumption that all the objects in the
scene approximately lie in one depth plane. A few works in litera-
ture cover a video registration method appropriate for close-range
people monitoring. These methods have been categorized as par-
tial image ROI registration [6].

In previous partial image registration approaches excluding
ours [10,11,4], MI is the only similarity measure used in local dense
correspondence algorithm for human monitoring applications
[6,12,13]. The accuracy of MI as a similarity metric is directly af-
fected by the MI window sizes. For unsupervised human monitor-
ing applications, obtaining appropriate MI window sizes for the
registration of multimodal pairs of images containing multiple
people with various sizes, poses, distances to cameras, and differ-
ent levels of occlusion is quite challenging. In the video surveil-
lance context, Chen et al. proposed a MI-based registration
method for pairs of thermal and visible images that matches win-
dows on foreground regions in the two images with the assump-
tion that each window contains one single depth plane [12]. In
their method, the problem of depth discontinuity inside an ROI
was not addressed. Later, Krotosky and Trivedi proposed a MI-
based disparity voting (DV) matching approach [6]. Their method,
for each ROI column, computes the number of votes related to each
disparity and assigns a disparity with maximum votes. Their meth-
od theoretically considers depth discontinuities that may occur be-
tween neighboring columns, but it ignores vertical depth
discontinuity where the pixels on a column belong to multiple
depths. For example, two people with different heights, where
the shorter person is in front of the taller one. To the best of our
knowledge, in our context of visual surveillance, all the existing
methods for multimodal stereo matching are local correspondence
approach.

Recent global stereo algorithms have achieved impressive re-
sults by modeling disparity image as Markov Random Field
(MRF) and determining disparities simultaneously by applying en-
ergy minimization method such as belief propagation [14–16], and
graph cuts (GC) [17,18]. Tappen and Freeman have shown that GC
and BP produce comparable results using identical MRF parame-
ters [19]. Sun et al. proposed a probabilistic framework to integrate
into BP model, additional information (e.g., segmentation) as soft
constraints [14]. Moreover, they have shown that the powerful
message passing technique of BP deals elegantly with textureless
regions and depth discontinuity problems. Later, Felzenszwalb
and Huttenlocher proposed an efficient BP algorithm that dramat-
ically reduced the computational time [15]. Their method is inter-
esting for time sensitive applications like video surveillance. More
recently, different extension of this efficient BP was proposed in
several works [20,21].

In our previous work, we have shown that Local Self-Similarity
(LSS), as a similarity measure, is viable for thermal–visible image
matching and outperforms various local image descriptors and
similarity measures including MI, especially for matching corre-
sponding regions that are differently textured (high differences)
in thermal and visible images [11]. Also we presented an extensive
study of MI and LSS as similarity measure for human ROI registra-
tion in [4]. In [10,4], we proposed a LSS-based local stereo corre-
spondence using disparity voting approach for close-range
multimodal video surveillance applications. In this work, we adopt
LSS as similarity measure in an energy minimization stereo model
using the efficient BP model [15].

3. MI and LSS for multimodal image registration

Mutual information (MI) is the classic dense similarity measure
for multimodal stereo registration. The MI between two image
windows L and R is defined as

MIðL;RÞ ¼
X

l

X
r

Pðl; rÞlog
Pðl; rÞ

PðlÞPðrÞ ; ð1Þ

where Pðl; rÞ, is the joint probability mass function and PðlÞ and PðrÞ
are the marginal probability mass functions. Pðl; rÞ is a two-dimen-
sional histogram gðl; rÞ normalized by the total sum of the histo-
gram. gðl; rÞ is computed as for each point, the quantized intensity
levels l and r from the left and right matching windows (L and R)
increment gðl; rÞ by one. The marginal probabilities PðlÞ and PðrÞ
are obtained by summing Pðl; rÞ over the grayscale or thermal
intensities.

Local Self-Similarity (LSS) is a descriptor that capture locally
internal geometric layout of self-similarities (i.e., edges) within
an image region (i.e., human body ROI) while accounting for small
local affine deformation. Initially, this descriptor has been
proposed by Sechtman and Irani [22]. LSS describes statistical co-
occurrence of small image patch (e.g. 5� 5 pixels) in a larger
surrounding image region (e.g. 40� 40 pixels). First, a correlation
surface is computed by a sum of the square differences (SSD) be-
tween a small patch centered at pixel p and all possible patches
in a larger surrounding image region. SSD is normalized by the
maximum value of the small image patch intensity variance and
noise (a constant that corresponds to acceptable photometric
variations in color or illumination). It is defined as

Spðx; yÞ ¼ exp � SSDpðx; yÞ
maxðvarnoise;varpatchÞ

� �
: ð2Þ

Then, the correlation surface is transformed into a log-polar
representation partitioned into e.g. 80 bins (20 angles and 4 radial
intervals). The LSS descriptor is defined by selecting the maximal
value of each bin that results in a descriptor with 80 entries. A
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