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a b s t r a c t

We consider the self-calibration problem for a generic imaging model that assigns projection rays to pix-
els without a parametric mapping. We consider the central variant of this model, which encompasses all
camera models with a single effective viewpoint. Self-calibration refers to calibrating a camera’s projec-
tion rays, purely from matches between images, i.e. without knowledge about the scene such as using a
calibration grid. In order to do this we consider specific camera motions, concretely, pure translations and
rotations, although without the knowledge of rotation and translation parameters (rotation angles, axis of
rotation, translation vector). Knowledge of the type of motion, together with image matches, gives geo-
metric constraints on the projection rays. We show for example that with translational motions alone,
self-calibration can already be performed, but only up to an affine transformation of the set of projection
rays. We then propose algorithms for full metric self-calibration, that use rotational and translational
motions or just rotational motions.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

Many different types of cameras have been used in computer vi-
sion. Existing calibration and self-calibration procedures are often
taylor-made for specific camera models, mostly for pinhole cam-
eras (possibly including radial or decentering distortion), fisheyes,
specific types of catadioptric cameras, etc.; see examples in
[2,3,10,6,11,12].

A few works have proposed calibration methods for a highly
generic camera model that encompasses the above mentioned
models and others [7,4,8,19,18]: a camera acquires images consist-
ing of pixels; each pixel captures light that travels along a projec-
tion ray in 3D. Projection rays may in principle be positioned
arbitrarily, i.e. no functional relationship between projection rays
and pixels, governed by a few intrinsic parameters, is assumed.
Calibration is thus described by:

� the coordinates of these rays (given in some local coordinate
frame).

� the mapping between rays and pixels; this is basically a simple
indexing.

One motivation of the cited works is to provide flexible calibra-
tion methods that should work for many different camera types.
The proposed methods rely on the use of a calibration grid and
some of them on equipment to carry out precisely known motions.

The work presented in this paper aims at further flexibility, by
addressing the problem of self-calibration for the above generic
camera model. The fundamental questions are: can one calibrate
the generic imaging model, without any other information than
image correspondences, and how? This work presents a step in this
direction, by presenting principles and methods for self-calibration
using specific camera motions. Concretely, we consider how pure
rotations and pure translations may enable self-calibration.

Further, we consider the central variant of the imaging model,
i.e. the existence of an optical center through which all projection
rays pass, is assumed. Besides this assumption, projection rays are
unconstrained, although we do need some continuity (neighboring
pixels should have ‘‘neighboring” projection rays), in order to
match images.

The self-calibration problem has been addressed for a slightly
more restricted model in [20,21,15]. Tardif et al. [20,21] introduced
a generic radially symmetric model where images are modeled
using a unique distortion center and concentric distortion circles
centered about this point. Every distortion circle around the distor-
tion center is mapped to a cone of rays. In [15] the self-calibration
problem is transformed to a factorization requiring only a singular
value decomposition of a matrix composed of dense image
matches. Thirthala and Pollefeys [22] proposed a linear solution
for recovering radial distortion which can also include non-central
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cameras. Here, pixels on any line passing through the distortion
center are mapped to coplanar rays.

This paper is an extended version of [16]. In addition to the
methods proposed in [16], we study the self-calibration problem
for two new scenarios. The first is to obtain a metric self-calibra-
tion from two pure rotations. Second we study the possibility of
obtaining self-calibration up to an unknown focal length in the
case of using one rotation and one translation. The same self-cali-
bration problem has been studied independently in [14,9,5], where
an algebraic approach is utilized for a differentiable imaging model
and infinitesimal camera motion. In contrast to these works, we
use a discrete imaging model and consider finite motions.

In this work we focus on restricted motions like pure transla-
tions and pure rotations. We compute dense matches over space
and time, i.e. we assume that for any pixel p, we have determined
all pixels that match p at some stage during the rotational or trans-
lational motion. We call a complete such set of matching pixels, a
flowcurve. Such flowcurves provide geometrical constraints on the
projection rays. For example, a flowcurve in the case of a pure
translation corresponds to a set of pixels whose projection rays
are coplanar. In the case of pure rotation, the corresponding projec-
tion rays lie on a cone. These coplanarity and ‘‘co-cone” constraints
are the basis of the self-calibration algorithms proposed in this
paper.

1.1. Overview of the paper

We formulate the generic self-calibration problem for central
cameras in Section 2. In Section 3 we describe the geometrical con-
straints that can be obtained from pure translation and pure rota-
tion. In Section 4 we show that with translational motions alone,
self-calibration can already be performed, but only up to an affine
transformation of the set of projection rays. Our main contribution
is given in Section 5 where we show different self-calibration ap-
proaches using combinations of pure rotations and pure transla-
tions. Finally in Section 6 we show results for fisheye images

using a self-calibration method that uses two rotations and one
translation.

2. Problem formulation

We want to calibrate a central camera with n pixels. To do so,
we have to recover the directions of the associated projection rays,
in some common coordinate frame. Rays need only be recovered
up to a euclidean transformation, i.e. ray directions need only be
computed up to rotation. Let us denote by Di the 3-vector describ-
ing the direction of the ray associated with the ith pixel p.

Input for computing ray directions are pixel correspondences
between images and the knowledge that the motion between
images is a pure rotation (with unknown angle and axis) or a pure
translation (with unknown direction and length). For simplicity of
presentation, we assume that we have dense matches over space
and time, i.e. we assume that for any pixel p, we have determined
all pixels that match p at some stage during the rotational or trans-
lational motion. Let us call a complete such set of matching pixels,
a flowcurve. For ease of expression we sometimes call flowcurves
arising from translational, respectively, rotational motion, t-curves,
respectively, r-curves. Flowcurves can be obtained from multiple
images undergoing the same motion (rotations about same axis
but not necessarily by the same angle; translation in same direc-
tion but not necessarily with constant speed) or from just a pair
of images I and I0, as shown further below.

In Figs. 1 and 2, we show flowcurves obtained from a single im-
age pair each for a pure translation and a pure rotation (rotation
about an axis passing through the optical center). Let p and p0 refer
to two matching pixels, i.e. pixels observing the same 3D point in I
and I0. Let p00 refer to the pixel that in I0 matches to pixel p0 in I. Sim-
ilarly let p000 be the pixel that in I0 matches to pixel p00 in I, and so
forth. The sequence of pixels p;p0;p00;p000; . . . gives a subset of a
flowcurve. A dense flowcurve can be obtained in several ways:
by interpolation or fusion of such subsets of matching pixels or
by fusing the matches obtained from multiple images for the same

Fig. 1. Illustration of flowcurves from translation motions (t-curves). On the top we show two images related by a pure translation. Here the camera moves towards the
building. Let p and p0 be two matching pixels in the left and right images, respectively. Now we consider the pixel in the left image at the same location as p0 in the right
image. Let the matching pixel to this one in the right image be p00 . Doing this iteratively we obtain a set of pixels p;p0;p00; . . . which lie on the flowcurve. In the bottom we show
the projection rays corresponding to pixels in the flowcurve. Let the optical center move from C1 to C2 and the projection rays corresponding to p be C1M, to p0 be C1M0 and so
on. It can be easily seen that the projection rays C1M;C1M0 , . . .as well as C2M . . ., are coplanar.
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