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a b s t r a c t

This paper presents radial distortion invariants and their application to lens evaluation under a single-
optical-axis omnidirectional camera. Little work on geometric invariants of distorted images has been
reported previously. We establish accurate geometric invariants from 2-dimensional/3-dimensional
space points and their radially distorted image points. Based on the established invariants in a single
image, we construct criterion functions and then design a feature vector for evaluating the camera lens,
where the infinity norm of the feature vector is computed to indicate the tangent distortion amount. The
evaluation is simple and convenient thanks to the feature vector that is analytical and straightforward on
image points and space points without any other computations. In addition, the evaluation is flexible
since the used invariants make any a coordinate system of measuring space or image points workable.
Moreover, the constructed feature vector is free of point orders and resistant to noise. The established
invariants in the paper have other potential applications such as camera calibration, image rectification,
structure reconstruction, image matching, and object recognition. Extensive experiments, including on
structure reconstruction, demonstrate the usefulness, higher accuracy, and higher stability of the present
work.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Geometric invariants, reflecting intrinsic properties of objects,
are extremely useful for classifying and recognizing objects
[1–5]. In particular, projective geometric invariants between
scene and image can be applied to recognizing objects without
requiring camera calibration and complete 3-dimensional (3D)
reconstruction.

In the past years, there have been many studies on projective
geometric invariants under perspective cameras [1–5]. However,
there are few studies on invariants under omnidirectional cameras
due to the severe image distortions and the nonlinear imaging
processes. The omnidirectional cameras, having a large field of
view, offer great benefit to three-dimensional modeling of wide
environment, robot navigation, and visual surveillance. Geometric
properties of these cameras are currently being studied by a
number of authors [6–18,29–37].

Catadioptric camera, fisheye camera, and wide-angle camera
are all omnidirectional cameras with radial distortion. In 2005,
Bayro-Corrochano and Lopez-Franco [16] projected features of
the catadioptric image to the sphere defined by Geyer and
Daniilidis [17], and then calculated projective geometric invariants
using conformal geometric algebra, where camera intrinsic param-
eters should be known. Also in the same year, Wu and Hu [18]
established invariant equations of space points and their radially
distorted image points, in which camera optical axis position was
used for 3D points and intersection point of camera optical axis
with 2-dimensional (2D) scene plane was used for 2D points.
Establishment of invariants without involving the optical axis
knowledge in scene space or other camera parameters deserves
investigations because solving these parameters is a complex task.

In this work, we:

(1) define the single-optical-axis omnidirectional camera to be a
kind of omnidirectional cameras that have a single optical
axis and whose optical center loci lie on the optical axis.
For example, the catadioptric camera with a quadric as its
mirror [17], the fisheye camera, some wide angle cameras,
and the traditional perspective camera are all single-
optical-axis cameras.
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(2) establish projective geometric invariant between 2D/3D
space points and their radially distorted image points under
a single-optical-axis camera. The invariants are called radial
distortion invariants. These invariants do not involve the
camera optical axis position in 3D space or the intersection
point of the camera optical axis with the scene plane. Addi-
tionally, they do not involve any other camera parameters
except for the principal point. The principal point can be
well approximated by the center of the imaged edge contour
(see the analyses in the fourth paragraph of Section 5.1 and
the fourth paragraph of Section 5.2). Thus, the invariants are
more practical and flexible.

(3) apply the established invariants for evaluating a single-
optical-axis camera lens. We construct a criterion function
and then design a feature vector. The infinity norm of this
feature vector is computed which indicates the tangent dis-
tortion amount of the camera. By comparing the infinity
norm with a given threshold, whether a single-optical-axis
camera lens is aligned or has tangent distortion is evaluated.
The algorithm is simple and convenient for evaluating a
camera as the feature vector is analytical that is directly con-
structed from image points and space points without any
other computations. In addition, the vector is free of point
orders and resistant to noise. Once a camera is evaluated
as no tangent distortion, only radial distortion model should
be used in applications. In this paper, scene structure recov-
ery after lens evaluation is proposed like in [18].

Geometric distortion of a camera lens includes: radial distor-
tion, tangent distortion, or the hybrid distortion of both [29]. The
distortion is an important factor for evaluating the quality of a
camera lens [19–22]. However, detecting tangent distortion is dif-
ficult. Moreover, for a single-optical-axis omnidirectional camera,
detection of its alignment is needed. As pointed out in [6,8,11], if
the distortion center and the principal point are different for a mis-
aligned camera, tangent distortion will appear. Thus, this paper is
very useful for a single-optical-axis camera to tell whether it is
aligned or has tangent distortion.

For example in Fig. 1, a catadioptric camera consisting of a
quadric mirror and a perspective camera lens is a single-optical-
axis omnidirectional camera. Before using this camera, alignment
is needed to make the mirror face the lens rightly. In [34], Mashita,
Iwai, and Yachida also think the mirror alignment is absolutely
essential and think it is difficult to align the mirror and camera
positions. If images of the misaligned camera were used to do cam-
era calibration or 3D reconstruction by regarding it aligned, the
results would not be accurate. How to know whether the camera
is aligned or the alignment extent can be accepted? The infinity

norm of the designed feature vector in this paper can be as an
indication.

Besides the proposed evaluation application, the established
invariants can find other applications. For example, they can be
used for recognizing polyhedrons or polygons directly from 2D dis-
torted images without a complete 3D reconstruction like those for
perspective images in [23,24].

The remainder of this paper is organized as follows. Some pre-
liminaries are listed in Section 2. The radial distortion invariants
are given in Section 3. Section 4 proposes the lens evaluation
algorithm for a single-optical-axis camera. The experimental
results are reported in Section 5, followed by a conclusion in
Section 6.

2. Preliminaries

As we all know, a point a in a 1-dimensional (1D) space (a line)
may be represented by the coordinate x, a point B in a 2D space (a
plane) may be represented by the coordinates (x,y), and a point C
in a 3D space may be represented by the coordinates (x,y,z). In a
projective space, point representations are slightly different and
they are represented by homogeneous coordinates. The homoge-
neous coordinates of the above point a is s(x,1)T if it is not at infin-
ity or is s(x,0)T if it is at infinity, where s is any a nonzero scalar.
Similarly, the homogeneous coordinates of B is s(x,y,1)T or
s(x,y,0)T and of C is s(x,y,z,1)T or s(x,y,z,0)T. In the following of this
paper, a bold italic letter just denotes a point or its homogeneous
coordinates and sometimes a vector or a matrix.

We use the symbol ‘‘j j’’ to denote determinant of points in it.
For example, ja1a2j is the determinant of 1D finity points ai, i = 1,
2 with homogeneous coordinates si (xi,1)T, whose absolute
value is also the distance between a1 and a2 if both si are taken
as 1. jB1B2B3j is the determinant of 2D finity points Bi, i = 1,2,3 with
homogeneous coordinates si(xi,yi,1)T. jC1C2C3C4j is the determinant
of 3D finity points Ci, i = 1, 2, 3, 4 with homogeneous coordinates
si(xi,yi,zi,1)T. For notational convenience, if there is no risk of ambi-
guity, jB1B2B3j for 2D points Bi will be simply written as jB1,2,3j and
jC1C2C3C4j for 3D points Ci as jC1,2,3,4j.

The cross ratio is fundamental in projective geometry that
keeps invariant under a projective transformation [25]. For four
collinear points ai, i = 1 . . . 4 being 1D homogeneous coordinates,
the cross ratio is defined as

ja1a3jja2a4j=ðja2a3jja1a4jÞ: ð1Þ

In a 2D projective plane, a pencil of lines is a set of lines, each of
which passes through a fixed point. The fixed point is called the
vertex of the pencil. There is a cross ratio from a pencil of four lines,
which is equal to the cross ratio of four collinear intersection
points of a general transversal line with this pencil. As shown in
Fig. 2, the four lines A0Ai, i = 1 . . . 4 construct a pencil with A0 being
the vertex. This pencil is denoted as A0(A1,A2,A3,A4) and its cross

Fig. 1. A catadioptric camera consisting of a quadric mirror and a perspective
camera lens: before using this camera, alignment is needed to make the mirror face
the lens rightly.
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Fig. 2. A pencil of lines.
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