Tetrahedron Letters 57 (2016) 5150-5167

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Digest paper Recent advances in mixed β-pyrrole substituted meso-tetraphenylporphyrins

Bhyrappa Puttaiah

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

ARTICLE INFO

Article history: Received 19 July 2016 Revised 28 September 2016 Accepted 3 October 2016 Available online 5 October 2016

Keywords: Synthesis Porphyrins Electrochemical redox Crystal structures Optical absorption Tunable properties NSD analysis

ABSTRACT

The modulation of physicochemical properties of the porphyrin macrocycle could find applications in nonlinear optics, dye-sensitized solar cells, photodynamic therapy etc. The synthesis of such porphyrins is challenging and gaining considerable importance. By appending appropriate substituents at the β -pyrrole or *meso*-carbon positions of the macrocycle could modulate the frontier orbitals of the porphyrin π -system. The present review discusses the reported synthetic routes employed for various mixed β -pyrrole substituted *meso*-tetraphenylporphyrins. Further, earlier work over the past 15 years on the influence of mixed β -substituent pattern in the electronic spectral, electrochemical redox and stereochemistry of the porphyrin macrocycle will be briefly discussed in this review article including their future prospects.

© 2016 Elsevier Ltd. All rights reserved.

Contents

Introduction. 5150 Syntheses of mixed β-substituted TPPs. 5151 Mixed β-tri and β-penta substituted TPPs. 5151 Unsymmetrically mixed β-hepta and β-octa-substituted TPPs 5151 Symmetrically and unsymmetrically mixed β-octasubstituted TPPs. 5151 Electronic absorption spectral properties 5151 Electrochemical redox properties. 5156 Structural chemistry of mixed β-substituted porphyrins 5152 Normal-coordinate structural decomposition analysis 5166 Conclusion 5166 Acknowledgment. 5166 References and notes 5160

Introduction

Synthetic porphyrins are of remarkable interest owing to their usefulness as model compounds of biological tetrapyrrole pigments.^{1–3} Of the synthetic porphyrin analogues, 5,10,15,20tetraphenylporphyrin, H₂TPP (Fig. 1) and its derivatives have been widely used for its ease of preparation, large π -conjugation and

E-mail address: byra@iitm.ac.in

http://dx.doi.org/10.1016/j.tetlet.2016.10.010 0040-4039/© 2016 Elsevier Ltd. All rights reserved. facile functionalization at both the *meso*-phenyl and β -pyrrole positions. Moreover, it can incorporate a variety of metal ions with variable oxidation states and diverse coordination geometry.³ From the past few decades there has been a shift in the derivatization of porphyrins with suitable substituents at both the *meso*-carbons and/or β -pyrrole positions for their use in potential material applications.⁴⁻⁶ The synthetic strategies with varying yields for the variety of *meso*-tetraarylporphyrins have been reported by various groups.^{7,8} Earlier methods involve the reaction

Figure 1. Molecular structure of H₂TPP and its IUPAC numbering scheme of the porphyrin ring.

of β -substituted pyrroles with aldehydes under appropriate experimental conditions to produce some mixed *β*-substituted porphyrins.^{7,8} Other synthetic routes for mixed meso-substituted porphyrins have been published in the literature.⁸ The TPPs with similar *β*-octasubstituents revealed unusual physicochemical properties.³ The porphyrins with similar substituents such as β-octafluoro-TPP,^{9a,b} and β-octachloro-TPP,^{9c} β-octabromo-mesotetrakis(2',6'-chlorophenyl)porphinato iron(III) chloride^{9d} have been reported in the literature. The mixed β-substituted systems generally offer unique changes in physicochemical properties when compared to meso-substituted porphyrins. The modulation of such properties of the porphyrin ring is vital in some material applications.¹ For example, introducing appropriate substituents (electron donor and acceptor) at the peripheral positions of the macrocycle induce '*push-pull*' effect on the porphyrin π -system and they find applications in nonlinear optics.^{10–12} Further, β -substituents/extended π -conjugation can shift the electronic absorption bands to the near infrared region and such systems may find use in photodynamic therapy^{13,14} and dye-sensitized solar cells.^{15–17}

In this digest article, an account on the role of mixed β -pyrrole substituents (here after referred as mixed β -substituents) of TPPs on some tunable physicochemical properties will be discussed briefly. Modulation of the properties of the porphyrin ring can be induced by appending appropriate substituents which are in direct conjugation with the porphyrin π -system. This article discusses the reported syntheses of different types of mixed β -substituted TPPs followed by their optical absorption spectral and electrochemical redox properties. Furthermore, the some crystal structures of the free base porphyrins and their metal complexes have been reviewed.

Syntheses of mixed β-substituted TPPs

Mixed β-tri and β-penta substituted TPPs

These mixed substituted porphyrins and their metal complexes have been reported by few research groups and they were synthesized using various strategies.^{18–28} The synthetic routes for the unsymmetrically mixed β -tri and β -penta-substituted TPPs (Scheme 1) were reported by employing Cu(II) and Ni(II)-porphyrins as versatile precursors because of their greater stability relative to free base porphyrins under strong acidic/ oxidative reaction conditions. In some of these schemes, the bromination, metallation and demetallation reactions are often used because of their utility in the synthesis of other derivatives. Mixed β -trisubstituted porphyrins were synthesized using β-mono-formyl¹⁸ or β-mono-nitro¹⁹ H₂TPP to generate regioselectively brominated H₂TPP(R)Br₂ (R = NO₂ or CHO). The H₂TPP(NO₂) (CN)₂ and other Suzuki or Stille cross-coupled products, H₂TPP(R) X₂ (X = Ph, PE and 2'-thienyl) were isolated in very good yields (Scheme 1a).^{18,19} Kadish group²⁰ reported the synthesis of the β-penta substituted TPP series (Scheme 1b) by formylation or nitration of NiTPP(Ph)₄ followed by demetallation to generate their H₂TPP(X)(Ph)₄ (X = CHO and NO₂). The more electron rich H₂TPP (CH₂OH)(Ph)₄ was obtained by the reduction of H₂TPP(CHO)(Ph)₄ with NaBH₄.

Unsymmetrically mixed β-hepta and β-octa-substituted TPPs

The tri-mixed B-hepta substituted porphyrin was generated by bromination of NiTPP(NO₂)(Ph)₄ with liq. Br₂/py yielded NiTPP $(NO_2)(Ph)_4Br_2^{20}$ (Scheme 2i) and its acid demetallation produced very good yields of the H₂TPP(NO₂)(Ph)₄Br₂. It was further cyanated to generate NiTPP(NO₂)(Ph)₄(CN)₂ in 44% yield. Bhyrappa and Bhavana²¹ reported the bromination of CuTPP(NO₂) followed by acid demetallation resulted in $H_2TPP(NO_2)Br_n$ (*n* = 6 and 7) and unexpected H₂TPPBr₈ in moderate yields (Scheme 2ii).²¹ CuTPP(NO₂)Br₆ was also prepared using NBS induced bromination of CuTPP(NO₂) by Kumar and Sankar.^{19b} Further, NiTPP(NO₂)Cl₇ was isolated by the chlorination of NiTPP(NO₂) with NCS in refluxing 1,1,2,2-tetrachloroethane (TCE) and the desired H₂TPP (NO₂)Cl₇ was isolated along with small amounts of NiTPPCl₈.²² The Suzuki and Stille cross-coupling reaction of H₂TPP(NO₂)Br₆ produced another class of H_2 TPP(NO₂)X₆ (X = Ph, PE and 2'-thienyl) porphyrins in moderate-to-high yields.^{19t}

Symmetrically and unsymmetrically mixed β -octasubstituted TPPs

In 2006, Bhyrappa et al., reported the synthesis of two series of antipodal symmetrically mixed β -substituted TPPs, H₂TPP (R)₄X₄s.²³ These derivatives were prepared using H₂TPPBr₄ as the precursor (Scheme 3).²⁴ The first step involves preparation of H₂TPP(R)₄ (R = CH₃ and Ph) derivatives in high yields by Suzuki cross-coupling reactions.²³ The halogenation of NiTPP(R)₄ (X) (X = Br and Cl) in very good yields. Further, H₂TPP(R)₄(CN)₄ derivatives were prepared by the cyanation of NiTPP(R)₄Br₄ followed by acid demetallation reaction. In these cyanation reactions, small amounts of NiTPP(R)₄(CN)₃ were also reported (15–20%). Other Stille cross-coupled products, H₂TPP(R)₄X₄ (X = PE and 2'-thienyl) were prepared by facile reaction of H₂TPP(R)₄Br₄ with (*n*-Bu)₃Sn (X) using Pd(0) catalyst.^{25a}

In 2015, another class of unsymmetrically mixed β -octasubstituted H₂TPP(Ph)₃X₅ (X = H, Cl, Br and CH₃) were reported using H₂TPPBr₃²⁶ as the precursor (Scheme 4).^{27a} The antipodal β -trifluoromethyl-TPP has also been reported in the literature.^{27b} Suzuki cross-coupling reaction of H₂TPPBr₃ generates H₂TPP(Ph)₃ in high yields. Its Ni(II)-complex, NiTPP(Ph)₃ on facile halogenation produced moderate-to-high yields of NiTPP(Ph)₃X₅ (X = Br and Cl).^{27a} Suzuki cross-coupling reaction of H₂TPP (Ph)₃Br₅ generates desired H₂TPP(Ph)₃(CH₃)₅ in 41% yield. The more electron-deficient, NiTPP(Ph)₃(CN)₅ was also prepared by cyanation of its NiTPP(Ph)₃Br₅.²⁸ Some divalent metal complexes of these mixed substituted TPPs reported in Schemes 1–4 have been reported in the literature.^{19–28}

Electronic absorption spectral properties

The electronic absorption properties of substituted porphyrins have been examined by various groups.²⁹ Gouterman's^{29a}

Download English Version:

https://daneshyari.com/en/article/5258262

Download Persian Version:

https://daneshyari.com/article/5258262

Daneshyari.com