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Skeletons are notoriously sensitive to contour noise, and an effective filtering scheme is needed in any
practical situation, where skeletons are involved. In this article, we introduce a new discrete framework
that allows us to define and compute families of filtered Euclidean skeletons, in 2D as well as in 3D or
higher dimensions. We prove several properties of our skeletonization scheme, in particular the preser-
vation of topological characteristics and the stability with respect to parameter changes.
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1. Introduction

Skeleton is one of the most studied and used concepts in pattern
recognition and analysis. Since its introduction by Blum in the six-
ties [10], it has been the subject of hundreds of publications deal-
ing with both practical and theoretical aspects. Indeed, despite the
simplicity of its most common definition, as the set of all centers of
maximal included balls, its use in real applications often raises dif-
ficult problems.

These difficulties are mainly due to two distinct issues.

First, the nice properties of skeleton that can be proved in the
continuous framework (uniqueness, thinness, homotopy equiva-
lence, invariance w.r.t. isometries) [28,25] do not all hold in dis-
crete grids which are commonly used in image processing.
Considerable effort has been devoted to design discrete skeleton-
ization methods that aim at retrieving these properties, at least
partially. These methods find their roots in different frameworks:
discrete geometry [11,23,27,32,24], digital topology [19,40,39,31],
mathematical morphology [33,37], computational geometry
[2,3,29], and partial differential equations [35]. Recent surveys
of the state of the art in skeletonization may be found in
[17,36,8,9].

Second, even in the continuous framework the skeleton suffers
from its sensitivity to small contour perturbations, in other words,
its lack of stability. A recent survey [1] summarizes selected
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relevant studies dealing with this topic. This difficulty can be
expressed mathematically: the transformation which associates a
shape to its skeleton is only semi-continuous. This fact, among oth-
ers, explains why it is usually necessary to add a filtering step (or
pruning step) to any method that aims at computing the skeleton.
Hence, there is a rich literature devoted to skeleton pruning, in
which different criteria were proposed in order to discard “spuri-
ous” skeleton points or branches: see [4,29,3,27,2,38,24,5,18,26],
to cite only a few.

Fig. 1 illustrates the four most popular ones among these crite-
ria. Consider a skeleton point and its corresponding maximal ball
(or disc in 2D), the most obvious criterion is based on the radius
of this ball (a): the skeleton point is filtered out if this radius is be-
yond a given threshold. For defining the second criterion (b) and
the following ones, we have to consider the projections of the skel-
eton point on the object boundary, that is, the contact points be-
tween the corresponding maximal ball and the boundary. The
angle formed by these projections and the skeleton point as vertex,
called bisector angle by some authors, also constitutes an effective
filtering criterion [39,18].

If we consider now the distance between the projected points,
when there are only two of them, or more generally the diameter!
of the smallest ball that contains all these points (see Fig. 1c), we ob-
tain the parameter /4 studied by Chazal and Lieutier [14], which has
interesting properties in relation with stability. These authors intro-

! Equivalently, one can consider the radius instead of the diameter.
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Fig. 1. Four criteria for filtering skeleton points: (a) radius, (b) bisector angle, (c) projection diameter, and (d) border portion length.

duced a particular class of filtered skeletons, called /-medial axes,
and they proved that small perturbations (in the sense of the Haus-
dorff distance) of the shape provoke only small perturbations of the
skeleton, except for some critical values of /. A discrete version of the
J-medial axis has been introduced and studied in [13], where its
robustness to noise and its low sensitivity to rotations have been
shown experimentally.

However, there are applications, where the presence of the crit-
ical values of / is prohibitive. It is the case when the needed filter-
ing level is equal to, or close to a critical value. In such situations,
small changes of the filtering parameter may result in changes of
the topological characteristics (e.g. the connectedness), or in sud-
den elimination or apparition of skeleton branches.

Let us illustrate this problem with the help of Fig. 2. In Fig. 2a,
we see that the parameter value A1=2 is not sufficient to filter
out spurious branches of the i-medial axis. However if we set
/=3, we loose a big and meaningful skeleton branch, whereas
some spurious branches are still present.

In 2D, this problem may be avoided by using a fourth criterion,
which consists of measuring the length of the portion of the object
boundary between the projected points, as illustrated in Fig. 1d.
Based on this idea, several methods have been proposed: hierar-
chic skeletons [29], veinerization [30], multiscale skeletons [21].
The parameter for these methods is a threshold value for the bor-
der portion length criterion. It can be easily seen that small varia-
tions of this parameter do not provoke big changes in the obtained
result, contrarily to what happens with the parameter /.

Using any of these four criteria, one obtains for any object a
family of nested skeletons, indexed by parameter values. Another
way of seeing this family, is to consider the function that associ-

ates, to each object point, the value of the considered criterion.
For example, the function on which is based the i-medial axis is
called PR (for Projection Radius) in this article. Final skeletons
are obtained as level sets (i.e., thresholds) of this function (see
Fig. 6).

The aim of this article is to formalize and generalize, in a dis-
crete framework, the approaches based on the fourth criterion
(border portion length), for they provide the best stability with
respect to variations of the filtering parameter. The method of
R.L. Ogniewicz and O. Kiibler [29] is defined in the framework
of the 2D constinuous plane, more precisely it applies to (sets
of) planar polygons, and the resulting skeletons are made of
straight line segments. These skeletons are proved to be homot-
opy-equivalent with inital objects, however if one needs to dis-
cretize these skeletons in 72, one looses this property. On the
other hand, the methods proposed by Pierrot-Deseilligny et al.
[30] and Falcao et al. [21] are defined in the 2D square grid.
However [30] does not provide an algorithm to compute skele-
tons in practice, and the algorithm proposed in [21] does not
guarantee topology preservation.

The discrete objects that we consider in this article are cubical
complexes, that is, they are sets of elements of different dimen-
sions (points, segments, squares, cubes, etc.) that are glued to-
gether according to certain rules (see Section 2). We consider
here 2D and 3D cubical spaces, however our approach extends eas-
ily to any finite dimension.

The first step of our skeletonization scheme consists of a direc-
tional parallel thinning (Section 5), guided by the priority function
PR (Section 4), and based on the operation of collapse (Section 3).
Collapse is an elementary topology-preserving transforma-
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